Department Gallery
Gallery Biological Science

Establishment of Department of Chemistry

Establishment

Establishment of Department of Chemistry in 2018 in Baltistan Region

Course Outlines

BS 1st YEAR (Semester-I)

S. No.

Title

Course

Credit Hours

1

English-I (Functional)

 

3(3-0)

2

Islamic Studies

 

2(2-0)

3

Everyday science

 

3(3-0)

4

Mathematics-I

 

3(3-0)

 

Computer Applications

 

3(3-0)

 

Inorganic Chemistry

 

4(3-1)

Total Credit Hours

18

 

Course Title: INORGANIC CHEMISTRY:          

Credit Hours: 4(3-1)

Course Content:

Chemical Bonding: Types of chemical bonding, ionic and covalent bonding, localized bond approach, theories of chemical bonding, valence bond theory (VBT), hybridization and resonance, prediction of molecular shapes using Valence Shell Electron Pair Repulsion (VSEPR) model, molecular orbital theory (MOT) applied to diatomic molecules, delocalized approach to bonding, bonding in electron deficient compounds, hydrogen bonding.

Acids and Bases: Brief concepts of chemical equilibrium, acids and bases including soft and hard acids and bases (SHAB), concept of relative strength of acids and bases, significance of pH, pKa, pKb and buffer solutions, theory of indicators, solubility, solubility product, common ion effect and their industrial applications.

p-Block Elements: Physical and chemical properties of p-block elements with emphasis on some representative compounds, inter-halogens, pseudo-halogens and polyamides.

 Lab. Lab safety and good laboratory practices, knowledge about material safety data  sheets  (MSD),  disposal  of  chemical  waste  and  first-aid  practices, qualitative analysis of salt mixtures,  quantitative analysis,  acid-  base titrations, preparation  and  standardization  of  acid  and  alkali  solutions,  redox  titrations, preparation  and  standardization  of  potassium  permanganate  solution  and  its use for the determination of purity of commercial potassium oxalate or oxalic acid, preparation and standardization of sodium thiosulfate solution and its use in  determination  of  copper  in  a  given  sample,  gravimetric  analysis, determination of barium in a given sample, determination of chloride in a given solution.

Recommended Books:

  1. Shriver, D. F., Atkins, P. W., Langford, C. H., Inorganic Chemistry, 2nd, Oxford University Press, (1994).
  2. Cotton, F. A. and Wilkinson, G., Advanced Inorganic Chemistry, 6th, John-Wiley & Sons, New York, (2007).
  3. Huheey, J. E., Inorganic Chemistry: Principles of Structure and Reactivity, 3rd, Harper International SI Edition, (2006).
  4. House, J. E., Inorganic Chemistry, Academic Press. USA, (2008).
  5. Lee, J. D., Concise Inorganic Chemistry, 5th, Chapman and Hall, (1996).
  6. Miessler, G. L., Tarr, D. A., Inorganic Chemistry, 3rd, Pearson Education, India, (2008).
  7. Huheey, J. E., Kieter E. A., Keiter L. R., Inorganic Chemistry: Principles of Structure and Reactivity, 4th, Benjamin-Cummings Pub Co., (1993).
  8. Sharpe, A. G., Inorganic chemistry, 3rd, Pearson Education India, (1981).
  9. Chaudhary S. U., Ilmi Textbook of Inorganic Chemistry, IlmiKitabKhana, Lahore, (2013).
  10. Catherine E. House crdft, Alan G. Sharpe, Inorganic Chemistry, 3rd Prentice Hall, (2008).
  11. Kathleen A. H., James E. H., Descriptive Inorganic Chemistry, 2nd, Brooks Cole, (2010).
  12. Wulfsberg G., Principles of Descriptive Inorganic Chemistry, 1st, University Science Books, (1991).
  13. Hill, R. H. JR and Fister, D. C., Laboratory Safety for Chemistry Students, John-Wiley & Sons, Inc., (2010).
  14. Mendham, J., Denny, R. C., Barnes, J. D., Thomas, M. and Sivasankar, B., Vogel’s Textbook of Quantitative Chemical Analysis, 6th, Pearson Education, Ltd., (2000).
  15. Svehla, G., Vogel’s Qualitative Inorganic Analysis, 7th, (7th imp.), Pearson Education, Ltd., (2009).

Course Objectives:

Students  will  acquire  knowledge  about  basic  concepts  of  organic  chemistry, chemistry  of  hydrocarbons  and  functional  groups  and  the  mechanism  of organic reactions. Such information will be useful for qualitative analysis and synthesis of organic compound.

Course Title: Everyday Science

:                      

Credit Hours: 3(3-0)

Course Content:

  1. Introduction: Nature of Science, Brief History of Science with special reference to contribution of Muslims in the evolution and development of science, Impact of science on society.
  2. The Physical Sciences: Constituents and Structure: “Universe, Galaxy. Solar system, Sun, Earth. Minerals; Processes of Nature -Solar and Lunar Eclipses Day and Night and their variation; Energy: - sources and resources of Energy, Energy conservation (i) Ceramics, Plastics. Semiconductors, (ii) Radio, Television, Telephones, Camera, Laser, Microscope (iii) Computers, Satellites; (iv) Antibiotics, Vaccines, Fertilizers, Pesticides,
  3. Biological Sciences: The basis of life – the cell, chromosomes, genes, nucleic acids; The building blocks – Proteins. Hormones and other nutrients Concept of balanced diet. Metabolism; Survey of Plant and Animal Kingdom – a brief survey of plant and animal kingdom to pinpoint similarities and diversities in nature; The Human body – a brief account of human Physiology, Human behavior.

Recommended Books:

  1. Encyclopedic Manual of everyday science. Dr. RabnawazSamo; Publisher; Maktab- e Faridi.
  2. 2. Every day science by DrRiazulHaq.
  3. 3. Everyday Science M Akram Kashmiri
  4. 4. KHAN ACADEMY is appreciated by CNN . Here you will find all topics of Every day Science except space.
  5. 5. Exploring life Sciences Turber, Kilburn & Howell
  6. 6. Exploring Physical Science Turber, Kilburn & Howell
  7. 7. Guide to Science Isaac Asimov
  8. 8. Science Restated Cassidy
  9. 9. Principles of Animal Biology Khan, M. Rafiq

Course Objectives: The students after going through the course will gain the latest knowledge on the topics in the course. The students of chemistry will also develop insight into topic of common interest from other fields which are making impact in our everyday life.

 

BS 1st YEAR (Semester-II)

 

S. No.

Title

Course

Credit Hours

1

English-II (Functional)

 

3

2

Essentials of Chemistry

 

3

3

Pak Studies

 

2

4

Mathematics-II

 

3

5

Statistics

 

3

6

Organic Chemistry

 

4 (3+1)

Total Credit Hours

18

 

 

 

Course Title:   ORGANIC CHEMISTRY    

:    

Credit Hours:   3+1

                                                                     Course content

 

Course Objectives:  Students will  acquire  knowledge  about  basic  concepts  of  organic  chemistry, chemistry  of  hydrocarbons  and  functional  groups  and  the  mechanism  of organic  reactions. Such  information will be useful  for qualitative analysis and synthesis of organic compounds.

Course Content:

Basic Concepts of Organic Chemistry: Bonding  and  hybridization,  localized  and  delocalized  bonding,  structure-aromaticity,  inductive  effect,  dipole  moment,  resonance  and  its  rules, hyperconjugation,  classification  and  nomenclature  of  organic  compounds including IUPAC system, types of organic reactions (an overview).

Chemistry of Hydrocarbons: Saturated,  unsaturated  and  aromatic  hydrocarbons  with  emphasis  on synthesis and  free  radical, electrophilic  addition and electrophilic  substitution reactions.

Chemistry of Functional Groups: Hydroxyl,  ether  and  amino  groups,  preparation  and  properties  of  alcohols, phenols,  ethers,  and  amines  with  focus  on  reaction  mechanism  and applications,  carbonyl  compounds,  preparations  and  reaction mechanism  of aldehydes  and  ketones  and  their  applications,  carboxylic  acids  and  their derivatives,  acidity  of  carboxylic  acids  and  effect  of  substituents  on  their acidity,  preparation  and  reactions  of  carboxylic  acids  and  their  derivatives including esters, amides, acid halides and acid anhydrides. 

306 Lab. Qualitative analysis of compounds with different functional groups, synthesis of organic  compounds  using  as  a  tool  for  understanding  techniques  like  reflux, distillation,  filtration,  recrystallization  and  yield  calculation,  organic  syntheses may  include  preparation  of  benzanilide  from  benzoyl  chloride,  succinic anhydride from succinic acid, phthalimide from phthalic anhydride, oximes and hydrazones  from  carbonyl  compounds,  and  an  ester  from  a  carboxylic  acid and alcohol etc. 

Recommended Books:

  1. Brown, W. and Poon, T., Introduction to Organic Chemistry, 3rd ed., John-Wiley & Sons, Inc., (2005). 15
  2. John, E. M. Organic Chemistry, 8th ed., Brooks/Cole Publishing Co, USA, (2012).
  3. Robert, T. M. and Robert, N. B., Organic Chemistry, 6th ed., Prentice Hall, New Jersey, (1992).
  4. Younus, M., A Textbook of Organic Chemistry, IlmiKitabKhana, Urdu Bazar, Lahore, Pakistan, (2006).
  5. Sykes, P., A Guide Book to Mechanism in Organic Chemistry, 6th ed., Pearson Education Limited, England, (1986).
  6. Solomons, T. W. G. and Fryhle, C. B., Organic Chemistry, 10th ed., John-Wiley & Sons, Inc., (2011).
  7. Furniss, B. S., Hannaford , A. J., Smith, P. W. G., Tatchell, A. R., Vogel’s Textbook of Practical Organic Chemistry, 5th ed., Longman, UK, (1989).
  8. Pavia, D. L., Kriz, G. S., Lampman, G. M. and Engel, R. G., A Microscale Approach to Organic Laboratory Techniques, 5th ed., Brooks/ Cole Cengage Learning, (2013).
  9. Mayo, D. W., Pike, R. M. and Forbes, D. C., Microscale Organic to Laboratory with Multistep and Multisacle Syntheses, 5th ed., John-Wiley & Sons, Inc., (2011).

 

 

 

 

 

Course Title: Essentials of Chemistry                         

: GEN-                                                                        

Credit Hours: 3(3-0)

Course Content

Course Objectives:

This Course will provide concept related to fundamentals of chemistry.

Introduction to the study of chemistry,

Measurements in chemistry, Matter, changes and energy, elements compounds and their composition, The periodic table and chemical nomenclature, The chemical bond, the chemical reaction: equations and quantities, aqueous solutions,  Environmental chemistry, Nuclear chemistry

Reference Books:

  1. Basic concepts of chemistry by Leo J. Malone
  2. Handbook of General Chemistry (3521) by Ullmann,s
  3. An introduction to General chemistry by jams Bon.

 

BS 2nd YEAR (Semester-III)

 S. No.

Title

Course

Credit Hours

1

English-III (Report Writing)

 

3

2

Food Chemistry

 

3

3

Environmental Chemistry

 

3

4

Statistics

 

3

5

Physical Chemistry

 

4(3+1)

Total Credit Hours

16

 

Course Title: FOOD CHEMISTRY

Credit Hours: 3(3-0)

Course Content:

Water: properties of water structures & their functions

Carbohydrates: Structure, classification, properties & nutritive aspects of

Sugars(carbohydrates) Polysaccharides (starch,glycogen,cellulose) Metabolism of  carbohydrates, Glycolysis, TCA cycle ,Electron transport chain.

Lipids and fatty acids: Structure, classification, & function of lipids & Fatty acids nutritive aspects of lipids, beta-oxidation of fatty acids.

Proteins: Structure, classification, function, properties and nutritive aspects of proteins, Protein denaturation, Classification & importance of amino acidsVitamins:Structure, classification, function, properties and nutritive aspectsEnzymes:Classification and properties of food enzyme, factors affecting enzyme activity, uses of enzymes in food industry Enzymatic and non enzymatic. Browning andtheir significance

Minerals: micro and macro nutrientsOccurrence and their importance in body

 

Recommended Books:

  1. Shriver, D. F., Atkins, P. W., Langford, C. H., Inorganic Chemistry, 2nd, Oxford University Press, (1994).
  2. Cotton, F. A. and Wilkinson, G., Advanced Inorganic Chemistry, 6th, John-Wiley & Sons, New York, (2007).
  3. Huheey, J. E., Inorganic Chemistry: Principles of Structure and Reactivity, 3rd, Harper International SI Edition, (2006).
  4. House, J. E., Inorganic Chemistry, Academic Press. USA, (2008).
  5. Lee, J. D., Concise Inorganic Chemistry, 5th, Chapman and Hall, (1996).
  6. Miessler, G. L., Tarr, D. A., Inorganic Chemistry, 3rd, Pearson Education, India, (2008).
  7. Huheey, J. E., Kieter E. A., Keiter L. R., Inorganic Chemistry: Principles of Structure and Reactivity, 4th, Benjamin-Cummings Pub Co., (1993).
  8. Sharpe, A. G., Inorganic chemistry, 3rd, Pearson Education India, (1981).
  9. Chaudhary S. U., Ilmi Textbook of Inorganic Chemistry, IlmiKitabKhana, Lahore, (2013).
  10. Catherine E. House crdft, Alan G. Sharpe, Inorganic Chemistry, 3rd Prentice Hall, (2008).
  11. Kathleen A. H., James E. H., Descriptive Inorganic Chemistry, 2nd, Brooks Cole, (2010).
  12. Wulfsberg G., Principles of Descriptive Inorganic Chemistry, 1st, University Science Books, (1991).
  13. Hill, R. H. JR and Fister, D. C., Laboratory Safety for Chemistry Students, John-Wiley & Sons, Inc., (2010).
  14. Mendham, J., Denny, R. C., Barnes, J. D., Thomas, M. and Sivasankar, B., Vogel’s Textbook of Quantitative Chemical Analysis, 6th, Pearson Education, Ltd., (2000).
  15. Svehla, G., Vogel’s Qualitative Inorganic Analysis, 7th, (7th imp.), Pearson Education, Ltd., (2009).

Course Objectives:

Students  will  acquire  knowledge  about  basic  concepts  of  organic  chemistry, chemistry  of  hydrocarbons  and  functional  groups  and  the  mechanism  of organic reactions. Such information will be useful for qualitative analysis and synthesis of organic compounds.

 Course Title: ENVIRONMENTAL CHEMISTRY

Credit Hours: 3

Course Content:

Atmospheric Pollution: The atmosphere, composition, temperature and pressure profile, role of free radicals in the atmosphere, temperature inversion and photochemical smog, particulate matter in the atmosphere, Industrial pollutants, atmospheric aerosols, acid-rain major sources, mechanism, control measures and effects on buildings and vegetation, global warming, major greenhouse gases, mechanism, control measures and global impact, the stratospheric ozone–the ozone hole, CFCs, ozone protection, biological consequences of ozone depletion.

Water Pollution: Water pollution and waste water treatment, municipal, industrial and agricultural sources of pollution, heavy metals contamination of water, eutrophication, detergents and phosphates in water, water quality criteria, water purification: primary, secondary and advanced treatment, removal of nitrogen and phosphorous compounds from polluted water, organic matter in water and its decomposition.

Land pollution: Soil and mineral resources, general principles of metal extraction, heavy metals contamination of soil, toxicity of heavy metals, bio-accumulation of heavy metals, organic matter in soil, macro and micro-nutrients in soil, ion-exchange in soil, soil pH and nutrients availability.

Green Chemistry: Atom economy, integrated pest’s management control (IPMC), ionic liquids, super critical extraction technology, green synthesis, recycling, carbon dioxide sequestering, water based paints.

Recommended Books:

  1. Baird, C. and Cann, M., Environmental Chemistry, 5th ed., W. H. Freeman & Company, (2012).
  2. Dara, S. S. and Mihsra, D. D., A Text Book of Environmental Chemistry and Pollution Control, 9th ed., S. Chand & Co. Ltd., (2004).
  3. Singhi, R. and Singh, V., Green Chemistry for Environmental Remediation, John-Willey & Sons, Inc., (2011).
  4. Holloway, A. M. and Wayne, R. P., Atmospheric Chemistry, 1st ed., Royal Society of Chemistry, (2010).
  5. Vaclavikova, M., Vitale, K., Gallios, G. P. and Ivanicova, L. Water Treatment Technologies for Removal of High Toxicity Pollutants, Springerlink, UK, ( 2010).
  6. Manahan, S. E., Environmental Chemistry, 9th ed., CRC press, Taylor & Francis group, USA, (2009).
  7. Girard, J. E., Principles of Environmental Chemistry, 2nd ed., Jones and Bartlett publishers, (2010).
  8. Harrison, R. M., Monks, P., Farmer, J. G., Graham, M. C., Mora, S. J., Pulford, I. and Hulsal, C., Principles of Environmental Chemistry, 1st ed., Royal Society of Chemistry, (2007).
  9. Matalack, A., Introduction to Green Chemistry, 2nd ed., CRC press, Taylor & Francis group, USA, (2010).
  10. Wright, J., Environmental Chemistry, Routledge, (2003).
  11. O’Neill, P., Environmental Chemistry, 3rd ed., Blackie Academic & Professional, (1998).
  12. Elsom, D. M., Atmospheric Pollution: A Global Problem, 2nd ed., Wiley-Blackwell, (1992).

 

 

 

Course Objectives:

Students will be able to acquire knowledge and develop understanding about the fundamental principles of environmental chemistry and different types of pollutions. Such information will be useful in studying and solving pollution related issues and experiments in the laboratory.

Course Title:       PHYSICAL CHEMISTRY

Credit Hours:              3+1                

Course Objectives:

Students  will  acquire  knowledge  to  enable  themselves  to  understand  the fundamental  principles  and  laws  of  thermodynamics  and  chemical  equilibria and  to  investigate  the  physical  properties  of  ideal/non-ideal  binary  solutions. Students will also be able to study the rates of reactions and perform related calculations. 

Chemical Thermodynamics:   Equation of  states,  ideal and  real gases,  the  virial equation  and  the  van der Waals equation  for real gases, critical phenomena and critical constants,  four laws of  thermodynamics and  their applications,  thermochemistry, calorimetry, heat capacities and  their dependence on  temperature, pressure and  volume, reversible  and  non-reversible  processes,  spontaneous  and  non-spontaneous processes,  relations  of  entropy  and  Gibbs  free  energy  with  equilibrium constant, Gibbs Helmholtz equation, fugacity and activity. 

 

Chemical Equilibrium:       General  equilibrium  expressions,  reaction  quotients,  examples  of  equilibrium reactions  in  solid,  liquid and gas phases, extent of  reactions and equilibrium constants,  Gibbs  energies  of  formation  and  calculations  of  equilibrium constants,  effect  of  temperature  and  pressure  on  the  equilibrium constants/compositions, van’t Hoff equation, Le-Chatelier’s principle. 

 

Solution Chemistry:       Physical  properties  of  liquids,  surface  tension,  viscosity,  refractive  index, dipole moment etc. and their applications, brief account of interactions among the molecules  in  liquids,  ideal  and  non-ideal  solutions,  Raoult’s  law  and  its applications, lowering of vapor pressure, elevation of boiling point, depression of  freezing point, osmotic pressure, vapor pressure of non-ideal solutions and Henry’s  law,  abnormal  colligative  properties,  degrees  of  association  and dissociation  of    solutes,  osmotic  pressure  and  its  measurement,  fractional distillation and concept of azeotropic mixtures. 

 

Chemical Kinetics:       The rates of reactions, zero,  first, second and  third order reactions with same and  different  initial  concentrations,  half-lives  of  reactions,  experimental 18  techniques  for  rate  determination  and methods  for  determination  of  order  of reaction  (integration,  half-life,  initial  rate,  and  graphical methods),  Arrhenius equation.

 

 Lab. 

Determination of viscosity and refractive index of liquids.

Determination of percent composition of liquid solutions viscometrically.

Determination of refractive index and molar refractivity.                                  

Determination of percent composition of liquid solutions by refractive index measurements.

Determination of molecular weight of a compound by elevation of boiling point ebullioscopic method).

Determination of molecular weight of a compound by lowering of freezing point (cryoscopic method).

Determination of heat of solution by solubility method.

Determination of heat of neutralization of an acid with a base.

Kinetic study of acid catalyzed hydrolysis of ethyl acetate.

Determination of partition coefficient of a substance between two immiscible

liquids.

 

Recommended Books:

  1. McQuarrie, D. A. and Simon, J. D., Physical Chemistry – A Molecular

Approach,1st

 ed., University Science Books,(1997).

  1. Atkins,P. and Paula,J.D., Atkin’s Physical Chemistry, 9th ed., Oxford

University Press, (2010).

  1. Shoemaker, D., Experiments in Physical Chemistry, 8th ed., McGraw Hill

Publishing Company Limited, (2003).

  1. Silbey, R., Alberty, R. and Bawendi, M., Physical Chemistry, 4th ed.,

(2005).

  1. Glasstone, S., Textbook of Physical Chemistry, Macmillan London (1960).
  2. James, A. M., Prichard, F. E., Practical Physical Chemistry, 3rd ed.,

Longman Group Limited, New York, (1974). 

  1. Chaudhary, S. U., Ilmi Textbook of Physical Chemistry, 2nd ed., IlmiKitab

Khana, Lahore, (2013).

  1. Atkins, P., Jones, L., Chemical Principles: The Quest for Insight, 5th ed., W.
  2. Freeman, New York, (2010).
  3. Linder, B., Elementary Physical Chemistry, World Scientific Publishing Co.

Ptv. Ltd., (2011).

  1. Davis, W. M., Dykstra, C. E., Physical Chemistry: A Modern Introduction,

2nd ed., CRC Press, (2011).

 

BS 2nd YEAR (Semester-IV)

 

S. No.

Title

Course

Credit Hours

1

English-IV

 

3

2

Teaching and reading skills

 

3

3

Entrepreneurship

 

3

4

Analytical Chemistry

 

3(2+1)

5

Applied Chemistry

 

2

6

Bio Chemistry

 

3(2+1)

Total Credit Hours

17

 

 

Course Title:   ANALYTICAL CHEMISTRY    

Credit Hours:   2+1              

 Course Objectives:

Students will  acquire  knowledge  about  sampling  and  their  handling  and

preparation  and  results  calculation  and  data  reporting.  In  addition  they  will

learn and develop understanding about  the  classical  techniques of analytical

chemistry and quality control and quality assurance 

 

Course Contents:

 

Chemometrics: Sampling, significant figures, stoichiometric calculations, measurement errors,

analysis  of  variance  (ANOVA),  arithmetic  mean,  median,  mode,  standard deviation/relative  standard deviation,  confidence  limits, Gaussian distribution, least square method, tests for significance, outliers

 

Quality Control and Quality Assurance: Definitions, seven tools for quality control, the concept of quality assurance, quality assurance  techniques, validations based on design qualification  (DQ), installation  qualification  (IQ),  operational  qualification  (OQ)  and  performance qualification  (PQ),  calibrations,  monitoring  and  quality  reviews,  periodical

trainings, six sigma concept, ISO standards. 

Classical Analytical Methods: Acid-base, complexometric and redox titrations, gravimetric analysis.

 

 Lab.

Calibration  of  volumetric  glassware,  electronic  and  analytical  equipment, statistical  evaluation  of  analytical  data  including  linear  regression  analysis, constructing  a  calibration  curve  from  a  given  analytical  data  using  spread sheet software, determination of hardness of water using EDTA, determination of  chloride  in  tap  water  sample,  estimation  of  copper,  arsenic,  hydrogen peroxide and vitamin C using iodometry, gravimetric analysis, determination of barium  in  barium  nitrate,  determination  of  nickel  in  a  given  steel  sample, determination  of  bicarbonates  in  a  clinical  sample  using  back-titration, determination of cation  in a mixture by complexometric  titration, studying  the effect  of  common  ions  on  solubility  of sparingly  soluble  salts  (e.  g.  AgCl  / PbSO4).

 

Recommended Books:

  1. Skoog, D. A., West, P. M., Holler, F. J., Crouch, S. R., Fundamentals of Analytical Chemistry, 9th ed., Brooks Cole Publishing Company, (2013). 20

 

  1. Christian, G. D., Analytical Chemistry. 6th ed., John-Wiley & Sons, New York, (2006).
  2. Harris, D. C., Quantitative Chemical Analysis, 8th ed., W. H. Freeman and Company, New York,USA, (2011).
  3. Kealey, D. and Haines, P. J,Instant Notes., Analytical Chemistry, Bios Scientific Publishers Limited, Oxford, UK, (2002).
  4. Matthios, Otto, CHEMOMETRICS-Statistics and Computed applications in Analytical Chemistry, 2nd ed., Wiley-VCH, Germany, (2007).
  5. Mitra A., Fundamentals of Quality Control and Improvement, 3rd ed., John-

Wiley & Sons, (2008).

  1. Miller, J. and Miller, J., Statistics and Chemometrics for Analytical Chemistry, 5th ed., Prentice Hall, (2005).

Course Title:   APPLIED CHEMISTRY                    

Credit Hours:   2                          

 Course Objectives: 

The  objectives  of  the  course  are  to  educate  the  students  about  the fundamentals of chemical industry, raw materials, manufacturing and industrial processes. 

 

Fundamentals of Chemical Industry:  Basic  principles  and  parameters  for  industrial  plant  unit  operations  and  unit processes.  

Chemical Industries: 

Raw materials, flow sheet diagrams and unit operations and unit processes of sulphuric acid, nitric   acid, hydrochloric acid, oxalic acid, formic acid, caustic soda and washing soda, cement industry, petroleum, textile, polymer and fuel industries, applications of these industries.

 

Recommended Books:

  1. Kent, J. A., Riegel's Handbook of Industrial Chemistry, 10th ed., Kluwer Academic/ Plenum Publishers, (2003).
  2. Vermani, O. P. and Narula, A. K., Applied Chemistry; Theory and Practice, New Age International Pvt. Ltd. Publishers, (2008).
  3. Hede, P. D., Bier. S.P., Inorganic and Applied Chemistry, Ventus publishing app., (2007).
  4. Sharma, J., Ndi., Applied Industrial Chemistry, Arise publishers & Distributors, (2012).
  5. Heaton, A., An introduction to Industrial Chemistry, 3rd ed., Chapman & Hall, (1996).

 

Course Title:    BIOCHEMISTRY

Credit Hours:    2+1

 

Course Objectives: 

Students will gain knowledge about fundamental concepts of  biochemistry as well as be able to learn about the structures, properties and functions of amino acids, proteins, carbohydrates, lipids and nucleic acids.

 

Introduction to Biochemistry:

Brief  introduction  to  the scope and history of Biochemistry, molecular  logic of the  living  organism,  cell  structures  and  their  functions,  origin  and  nature  of biomolecules.

 

Acid–Base and Electrolyte Chemistry:

Intracellular and extracellular electrolytes, body  fluids as electrolyte solutions, pH, Henderson-Hasselbalch equation and buffers, amino acids, peptides and proteins, buffer capacity, buffers of body  fluids, haemoglobin as an acid-base system,  renal  control  of  acid-base,  balance, acid-base  disorders:  acidosis, alkalosis. haemoglobin and omeostasis, variation of Na+, K+, Cl

- in acid-base disturbances.

 

Carbohydrates, Lipids and Proteins:

Definition  and  classification,  chemistry,  physical  and  chemical  properties  of various  classes  of  carbohydrates,  biological  functions  of  starch,  glycogen, cellulose,  and  cell  wall  polysaccharides,  acid  mucopolysaccharides  and proteoglycans.

 

Definition  and  classification  of  lipids,  chemistry  and  biological  importance  of fatty acids, waxes, glycerides, phospholipids, sphingolipids, glycolipids, sterols and prostaglandins.

 

Significance of lipids in biological membranes and transport mechanism. Chemistry and classification of amino acids, physical and chemical properties of amino acids, biological significance of amino acids, peptides, proteins, their classification,  properties  and  biological  significance,  primary,  secondary tertiary and quatenary structure of proteins, denaturation of proteins.

 

Nucleic Acids:

Chemical composition of nucleic acids, structure and biological significance of nucleic acids, chemical synthesis of oligonucleotides, nucleic acids hydrolysis, isolation and separation of nucleic acids, introduction to recombinant DNA technology.

 Lab. 

Qualitative and quantitative analysis of carbohydrates, lipids and proteins. Laboratory  work  illustrating  topics  covered  in  the  lecture  of  Chem.131, Determination of pH,  Preparation of buffers. Enzyme catalysis, Progress curve for enzyme catalyzed reactions, Determination of   values. To study the effect of different factors on the rate of enzyme catalyzed reactions.

 Recommended Books:

  1. R. C. Alkire, D. M. Kolb, J. Lipkowski, Biselectro chemistry, volume 13, 13th ed., Publisher: Wiley-VCH Verlag GmbH & Co. ISSN: 0938-5193.
  2. Nelson,D.L., Lehninger’s Principles of Biochemistry, 6th ed., Publisher: Macmillan Higher Education, (2008). ISBN: 149222638, 9781429222631.
  3. Voet, D. and Voet, J.D., Biochemistry, 4th ed., illustrated. Publisher: John-Wiley & Sons Canada, Limited, (2011). ISBN: 0470917458, 9780470917459.
  4. Murray, R.M. and Harper, H.A., Harper’s Biochemistry, 25th ed., Publisher:Appleton& Lange, (2000). ISBN: 0838536840, 9780838536841.
  5. Zubay, G. L., Biochemistry, 4th ed., illustrated, Publisher W. M. C. Brown Publishers, (1998), Digitized (2008). ISBN: 0697219003, 9780697219008.
  6. Guyton, A. C. & Hall, J. E., Guyton & Hall Textbook of Medical Physiology, 12th ed., Publishers: Saunders Elsevier, (2011). ISBN: 978-1-4160-4574-8.
  7. Harvey, R. A., Ferrier, DR, Karandish S., Lippincott’s illustrated Reviews: Biochemistry, 5th ed., and Biochemistry Map (Med maps) Bundle. Publisher: Lippincott Williams & Wilkins, (2010). ISBN: 1451116314, 9781451116311.

 

BS 3rd YEAR (Semester-V)

S. No.

Title

Course

Credit Hours

1

Inorganic Chemistry

 

4 (3+1)

2

Organic Chemistry

 

4 (3+1)

3

Physical Chemistry

 

4 (3+1)

4

Analytical Chemistry

 

4 (3+1)

Total Credit Hours

16

 Course Title: INORGANIC CHEMISTRY

Credit Hours: 4(3-1)

Course Content:

Chemistry of d-block elements and coordination complexes: Back ground of coordination chemistry, nomenclature and structure of coordination complexes with coordination number 2-6, chelates and chelate effect, theories of coordination complexes, Werner's theory, valence bond theory (VBT), crystal field theory (CFT) and molecular orbital theory (MOT), Jahn-Teller theorem, magnetic properties, spectral properties, isomerism, stereochemistry, and stability constants of coordination complexes.

Chemistry of f-block elements:

  1. Lanthanides: General characteristics, occurrence, extraction and general principles of separation, electronic structure and position in the periodic table, lanthanides contraction, oxidation states, spectral and magnetic properties and uses.
  2. Actinides: General characteristics, electronic structure, oxidation state and position in the periodic table, half-life and decay law.

501 Lab.

Preparations of following Inorganic Complexes;

Tetraamminecopper (II) sulphate.

Potassiumtrioxalatochromate (III).

Potassiumtrioxalatoaluminate (III).

cis-Potassium dioxalatodiaquachromate (III).

Determination of zinc and cadmium by complexometric titration

Chromatographic separations of transition metals;

Separation of Ni2+ & Co2+ ions in a mixture by paper chromatography.

Separation of Ni2+ & Cu2+ ions in a mixture by paper chromatography.

Separation of Cu2+ & Fe2+ ions in a mixture by paper chromatography.

Spectrophotometric determination of iron, manganese and nickel.

Recommended Books:

  1. Cotton, F. A., Wilkinson, G., Murillo, C. A. and Bochmann, M., Advanced Inorganic Chemistry, 6th ed., Wiley-Interscience, (1999).
  2. Housecraft, C. and Sharpe, A. G., Inorganic Chemistry, 4th ed., Prentice Hall, (2012).
  3. Miessler, G. L. and Tarr, D.A., Inorganic Chemistry, 4th ed., Pearson-Prentice Hall International, (2010).
  4. Douglas, B., McDanial, D., Alexander, J., Concepts and Models of Inorganic Chemistry, 3rd ed., John-Wiley & Sons, New York, (1994).
  5. Shriver, D. and Atkins, P., Inorganic Chemistry, 5th ed., W. H. Freeman & Company, (2010).
  6. Lee, J. D., Concise Inorganic Chemistry, 5th ed., Blackwell Science Ltd., (1996).
  7. Atkins, P. and Jones, L., Chemicals Principles, 5th ed., W. H. Freeman & Company, (2010).
  8. Svehla, G., Vogel’s Textbook of Macro and Semimicro Qualitative Inorganic Analysis, 5th ed., Longman Group Limited, (1979).
  9. Huheey, J. E., Kieter, E. A. and Kieter, R. L., Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed., Prentice Hall, (1997).
  10. Pass, G., Sutcliffe, H., Practical Inorganic Chemistry, Preparations, Reactions and Instrumental Methods, 2nd ed., Chapman and Hall (1974).
  11. Müller, U., Inorganic Structural Chemistry, 2nd ed., John-Wiley & Sons, Ltd., (2006).
  12. Marusak R. A., Doan K., Cummings S. D., Integrated Approach to Coordination Chemistry, 1st ed., John-Wiley & Sons, (2007).
  13. Chaudhary, S. U., Ilmi Textbook of Inorganic Chemistry, IlmiKitabKhana, Urdu Bazar, Lahore, (2013).

Course Objectives:

Students will acquire knowledge about the physical and chemical properties of d- & f- block elements on the basis of their electronic configurations and will be able to work out structures of coordination compounds through development of understanding of VBT, CFT and MOT.

  

Course Title: ORGANIC CHEMISTRY

Credit Hours: 4(3-1)

Course Content:

Stereochemistry:

Types of stereoisomers, RS and EZ notation, optical activity, stereoselectivity and stereospecificity, conformational analysis.

Organic Reactions and Mechanism:

Detailed mechanism of aliphatic reactions including addition, substitution, and elimination reactions, concept of energy profile, transition state and intermediate.

 Lab.

Experiments using polarimeter such as to determine optical activity of a sugar solution and to determine sugar concentration by polarimeter, isomerization of maleic acid.

Experiments involving aliphatic addition, elimination and substitution reactions, e.g., synthesis of cyclohexene from cyclohexanol, addition reaction to cyclohexene etc.

Synthesis of a chalcone explaining the concept of condensation and dehydration, N-Alkylation of phthalimide, etc.

 

Recommended Books:

  1. Robert, T. M., and Robert, N. B., Organic Chemistry, 6th ed., Prentice Hall, New Jersey, (1992).
  2. John, E. M., Organic Chemistry, 8th ed., Brooks/Cole Publishing Co, USA, (2012).
  3. Younas, M., A Textbook of Organic Chemistry, IlmiKitabKhana, Urdu Bazar, Lahore, (2006).
  4. Morris, D. G., Stereochemistry (Basic Concepts in Chemistry), Wiley-RSC, (2002).
  5. Mislow, K., Introduction to Stereochemistry, Dover Publications Inc., (2003).
  6. David M., Stereochemistry (Tutorial Chemistry Texts), Royal Society of Chemistry, (2002).
  7. Furniss, B. S, Hannaford, A. J., Smith, P. W. G., Tatchell, A. R., Vogel’s Textbook of Practical Organic Chemistry, 5th ed., Longman, UK, (1989).
  8. Mohan J., Organic Analytical Chemistry, Theory and Practice, 1st ed. Alpha Science International, Ltd. (2003).
  9. Seiler, J. P., Good Laboratory Practice: The Why and the How, 2nd ed., Springer, (2005).
  10. Brown, W. H., Fotte, C. S., Iverson, B. L. and Anslyn, E. V., Organic Chemistry, 6th ed., Brooks/ Cole Cengage Learning, (2012).
  11. Solomons, T. W. G. and Fryhle, C. B., Organic Chemistry, 10th ed., John-Wiley & Sons, Inc., (2011).
  12. Pavia, D. L., Kriz, G. S., Lampman, G. M. and Engel, R. G., A Microscale Approach to Organic Laboratory Techniques, 5th ed., Brooks/ Cole Cengage Learning, (2013).
  13. Eames, J. and Peach, J. M., Stereochemistry at a Glance, Blackwell Science, Ltd., (2003).
  14. Eliel, E. L., Wilen, S. H. and Doyle, M. P., Basic Organic Chemistry, John-Wiley & Sons, Inc., (2001).
  15. Eliel, E. L. and Wilen, S. H., Stereochemistry of Organic Compounds, John-Wiley & Sons, Inc., (1994).

Course Objectives:

Students will gain knowledge about the stereochemical behavior of organic molecules and acquire an ability to propose mechanism of simple reactions

 

 

Course Title: PHYSICAL CHEMISTRY

Credit Hours: 4(3-1)

Course Content:

Quantum Chemistry:

Black body radiation, photoelectric effect, line spectra of elements, Bohr atomic model, wave and particle nature of matter, de Broglie’s equation, Young’s double slit experiment, Heisenberg’s uncertainty principle, wave functions and Born interpretation of wave functions, probability density, eigenfunctions and eigenvalues, Hamiltonian operator, Schrödinger wave equation, wave functions for hydrogen-like atomic orbital’s, radial distribution functions, shielding and penetration, effective nuclear charge, orbital energies, periodic trends in the properties of the elements in the periodic table.

Kinetic Theory of Gases:

Probability density for molecular speeds of gas molecules, Maxwell distribution of molecular speeds, average speeds, pressure of an ideal gas, calculation of molecular speeds, binary collisions, effusion and mean free paths, Maxwell-Boltzmann’s law of energy distribution, method for the determination of the Avogadro’s number (NA), statistical probability and entropy.

Phase Equilibrium:

Gibbs phase rule, Phase diagrams of one component and two component systems, Gibbs energy and the phase diagram of a substance, location of phase boundaries, Clausius-Clapeyron equation, vapor-liquid equilibrium of binary liquid mixtures, binary phase diagrams and lever rule.

 Lab.

Equilibrium constant of the KI + I2 = KI3 reaction.

Kinetics of saponification of ethyl acetate.

Acid catalyzed hydrolysis of sucrose.

Study of the adsorption isotherms of acetic acid-charcoal system.

Study of the charge transfer complex formation between iodine and benzene.

Determination of activation energy for the acid catalyzed hydrolysis of ethyl acetate.

Determination of partial molar volumes.

Characterization of the given compound by UV-Vis spectroscopy

  

Recommended Books:

  1. Silbey, R. J., Alberty, R. A., and Bawendi, M. G., Physical Chemistry, 4th ed., Jojn-Wiley & Sons, (2005).
  2. McQuarrie, D. A. and Simon, J. D., Physical Chemistry – A Molecular Approach, 1st ed., University Science Books, (1997).
  3. Atkins, P. and Paula, J. D., Atkin’s Physical Chemistry, 9th ed., Oxford University Press, (2010).
  4. Moore. W. J., Physical Chemistry, 4th ed., Longman Publisher (1972).
  5. Coulson C. A., Vanlence, Oxford University Press (1980).
  6. Keeler. J. and Wothers, P., Chemical Structure and Reactivity: An Integrated Approach, 1st ed., Oxford University Press, (2008).
  7. Helpern, A. M., Experimental Physical Chemistry: A Laboratory Textbook 2nd ed., Prentice Hall, (1997).
  8. Garland, C. W., Nibler, J. W. and Shoemaker, D., P., Experiments in Physical Chemistry, 8th ed., McGraw-Hill, (2003).
  9. Born, Max., Atomic Physics, 8th ed., Blackie & Son Ltd., (1969).
  10. Atkins, P., Jones, L., Chemical Principles: The Quest for Insight, 5th ed., W. H. Freeman, New York, (2010).
  11. James, A. M., Prichard, F. E., Practical Physical Chemistry, 3rd ed., Longman Group Limited, New York, (1974).

Course Objectives:

Students will be able to understand and acquire knowledge about the principles and theoretical background of quantum chemistry, kinetics theory of gases and phase equilibrium. The knowledge gained thus can be applied to study various aspects of quantum mechanics, gas kinetic behavior and thermodynamics and phase equilibrium.

 

Course Title: ANALYTICAL CHEMISTRY

Credit Hours: 4(3-1)

Course Content:

Separation Methods:

Principle of solvent extraction, solvent extraction of metals, analytical separations, multiple batch extraction, counter current distribution, solid-phase extraction, solvent extraction by flow injection method, principles of chromatography, classification of chromatographic techniques, overview of paper, thin layer, column, ion exchange chromatography and electrophoresis.

Analytical Spectrophotometry:

Properties of light and its interaction with matter, relation between frequency, velocity and wave number, Lambert- Beer’s law and its limitations, single beam and double beam spectrophotometers, lamps and lasers as sources of light, monochromators, detectors, photomultiplier tube, photodiode array, charged coupled device, FT-IR spectroscopy, fourier analysis, interferometry, noise and its control.

Separation of phenol from given organic mixture using solvent extraction.

Separation of given mixture of cations using Paper Chromatography.

Analysis of the composition of a mixture of nitro anilines by TLC.

Separation of sugars using paper chromatography.

Separation of amino acids using paper/thin layer chromatography.

Deionization and softening of water using ion exchange chromatography.

Determination of λmax of KMnO4 and K2Cr2O7 solutions and verification of Beer-Lambert’s law.

Determination of stoichiometry of a metal complex by visible spectrometry.

Determination of aspirin and caffeine in a proprietary analgesic by double beam UV-Vis. spectrometer.

Quantification of iron in a given sample by using single beam spectrophotometer.

A study of characteristics infrared absorption frequencies.

Recommended Books:

  1. Skoog, D. A., West, P. M., Holler, F. J., Crouch, S. R., Fundamentals of Analytical Chemistry, 9th ed., Brooks Cole Publishing Company, (2013).
  2. Harris, D. C., Quantitative Chemical Analysis, 8th ed., W. H. Freeman and Company, New York, USA, (2011).
  3. Christian, G. D., Analytical Chemistry, 6th ed., John Wiley and Sons, New York, (2006).
  4. Kealey, D. and Haines, P. J., BIOS Instant Notes in Analytical Chemistry, 1st ed.,BiosSaence Publisher Ltd. Oxford UK. (2002)
  5. Pavia, D. L., Lampman, G. M., Kriz, G. S. and Vyvyan, J. A., Introduction to spectroscopy, 4th ed., Cengage Learning, (2008).
  6. Wall, P. E., Thin Layer Chromatography: A Modern Approach (RSC Chromatography Monographs), 1st ed., Royal Society of Chemistry, (2005).
  7. Deinstrop, E. H., Applied Thin Layer Chromatography, 2nd ed., Wiley-VCH, (2006).
  8. Kellener. R, Mermet. J. M., Otto, M., Valcarcel, M., Widmer, H.M., Analytical Chemistry: A Modern Approach to Analytical Science, Wiley. VCH, (2004)
  9. Hollas, J. M., Modern Spectroscopy, 4th ed., John-Wiley & Sons, Ltd., England (2004).

Course Objectives:

The main objectives of this course are to introduce the students to the basics principles, instrumental aspects and applications of separation and spectrophotometric analytical methods

BS 3rd YEAR (Semester-VI)

S. No.

Title

Course

Credit Hours

1

Inorganic Chemistry

 

4 (3+1)

2

Organic Chemistry

 

4 (3+1)

3

Physical Chemistry

 

4 (3+1)

4

Analytical Chemistry

 

4 (3+1)

Total Credit Hours

16

 

Course Title:     INORGANIC CHEMISTRY   

Credit Hours:     3+1              

 Course Objectives:

Students will acquire knowledge about various types of inorganic materials, their structure, synthesis, characterization and applications in various fields

Course Contents:

Introduction  to  inorganic materials, crystalline and amorphous states, bonding in  solids,  non-stoichiometric  compounds,  binary  solid  solutions, mechanical, electrical, magnetic, dielectric, optical, and  chemical  (corrosion) properties of advanced  materials,  synthesis  (e.g.,  sol-gel,  hydrothermal  techniques,  etc.) and design of inorganic materials and characterization, doping and purification of  silicone,  chemical  vapour  deposition  and  sputtering,  introduction  to  nano materials.

 

Lab 

  1. Estimation of anions in mixtures: Chloride-phosphate, chloride-nitrate, oxalate-chloride, sulphate-phosphate, bromide-nitrate, borate-acetate, iodide-nitrate.
  2. Iodometric titration with potassium iodate.
  3. Gravimetric estimation of oxalate.
  4. Precipitation Titrations.
  5. a) Determination of strength of NaCl given solution by AgNO3 using Fluorescein as indicator.
  6. b) Determination of % age purity of KBr using Fluoresceine as indicator.
  7. c) Determination of % composition of mixture of KI & KNO3 using Eoscein as indicator.
  8. Spectrophotometric determination of cerium.
  9. Separation of heavy metals using solvent extraction technique.

 

Recommended Books:

  1. Xu, R., Pang, W., Huo, Q., Modern Inorganic Synthetic Chemistry, 1sted., Elsevier, (2011).
  2. Mendham, J., Denney, R. C., Barnes, J. D. and Thomas, M. J. K., Vogel’s Quantitative Chemical Analysis, 6th ed., Prentice Hall, (2000).
  3. Cotton, F. A., Wilkinson, G., Murillo, C. A. and Bochmann, M., Advanced Inorganic Chemistry, 6th ed., Wiley-Interscience, (1999).
  4. Huheey, J. E., Keiter, E. A. and Keiter, R. L., Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed., Prentice Hall, (1997).
  5. Housecraft, C. and Sharpe, A. G., Inorganic Chemistry, 4th ed., Prentice Hall, (2012).
  6. Rodgers G. E., Descriptive Inorganic, Coordination, and Solid State Chemistry, 3rd ed., Brooks- Cole, (2012).
  7. Smart L. E., Moore E. A., Solid State Chemistry: An Introduction, 4th ed., CRC Press, (2012).
  8. Müller, U., Inorganic Structural Chemistry, 2nd ed., John-Wiley & Sons, (2006).
  9. Schwarzenbach D., Crystallography, 1st ed., John-Wiley & Sons, (1996).

                                                                                   

 

 

Course Title:     ORGANIC CHEMISTRY

Credit Hours:     3+1               

 Course Objectives:

Students  will  acquire  knowledge  and  understanding  about  aromatic substitution  reactions  and  oxidation  and  reduction  as  well  as  pericyclic reactions. 

Course Contents:

 Aromatic Substitution Reactions:  Mechanisms  of  aromatic  reactions  including  electrophilic  and  nucleophilic substitutions, effect of substituents on orientation and reactivity. 

 

Oxidation-reductions Reactions: Common oxidizing and reducing reagents, reactions involving elimination of H, cleavage  of C-C  bond,  replacement  of  hydrogen  by  oxygen,  and  addition  of oxygen  to substrates,  reaction  involving  replacement of oxygen by hydrogen,

removal of oxygen from the substrates and reduction with cleavage. 

 Pericyclic Reactions:  Introduction  to  pericyclic  reactions,  frontier  orbital  theory, mechanisms  of electrocyclic, cycloaddition and sigmatropic reactions.

 

 Lab.

Experiments  involving aromatic substitution, oxidation/reduction reactions and pericyclic  reactions,  nitration  of  nitrobenzene  to  meta-dinitrobenzene, reduction of meta- dinitrobenzene to meta-nitroaniline,  sulphonation of aniline, oxidation  of  benzaldehyde,  oxidation  of  cyclohexanol  to  cyclohexanone. Preparation  of  benzoic  acid  and  benzyl  alcohol  from  benzaldehyde  using Cannizzaro’s reaction.

 

Recommended Books:

  1. Pavia, D. L., Kriz, G. S., Lampman, G. M. and Engel, R. G., A Microscale Approach to Organic Laboratory Techniques, 5th ed., Brooks/Cole Laboratory Series, Cengage Learning, (2013).
  2. Furniss, B. S., Hannaford, A. J., Smith, P. W. G., Tatchell, A. R., Vogel’s Textbook of Practical Organic Chemistry, 5th edition, Longman, UK, (1989).
  3. Mohan, J., Organic Analytical Chemistry: Theory and Practice,1st ed. Alpha Science Int. Ltd.New Delhi, India, (2003).
  4. Robert, T. M. and Robert, N. B., Organic Chemistry, 6th ed., Prentice Hall, New Jersey, (1992). 
  5. Tse-Lok, H., Symmetry: A Basis for Synthesis Design,  John-Willey & Sons, Inc., New York, (1995). 
  6. Pine, S. H., Organic Chemistry, 5th ed., Tata McGraw-Hill, India,  (1987).
  7. Sykes, P., A Guide Book to Mechanism in Organic Chemistry, 6th ed.,

Pearson Education, (1986).

  1. Mayo, D. W., Pike, R. M. and Forbes, D. C., Microscale Organic Laboratory with Multistep and Multiscale Syntheses, 5th ed., John-Wiley & Sons, Inc., (2011).
  2. Gilbert, J. C. and Martin, S. F., Experimental Organic Chemistry: A Miniscale and Microscale Approach, 5th ed., Brooks/ Cole Cengage Learning, (2010).
  3. Solomons, T. W. G. and Fryhle, C. B., Organic Chemistry, 10th ed., John-Wiley & Sons, Inc., (2011).
  4. Carey, F. A. and Giuliano, R. M., Organic Chemistry, 9th ed., McGraw-Hill Education, (2013).
  5. Bruice, P. Y., Organic Chemistry, 7th ed., Perason Education, Ltd., (2013). 31

 

  1. Smith, M. B., March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th ed., John-Wiley & Sons, Inc., (2013).
  2. Ansari, F. L., Qureshi, R. and Qureshi, M. L., Electrocyclic Reactions: From Fundamentals to Research, Wiley-VCH, Germany, (1999).
  3. Kürti, L. and Czakó. B., Strategic Applications of Named Reactions in Organic Synthesis: Background and Detailed Mechanisms, Elsevier Inc., (2005).

 

Course Title:     PHYSICAL CHEMISTRY

Credit Hours:         3+1  

 

Course Objectives:

Students will acquire knowledge and understanding about  the  theoretical and

instrumental  as  well  as  application  related  aspects  of  conductometric,  and

electrochemical  techniques  and  surface  chemistry.  They  will  also  acquire

information  regarding  nuclear  binding  energy,  nuclear  instabilities  and  decay

mechanisms as well as the fission and fusion processes.

 

Conductometry:   Ions in solution, measurement of conductance and Kohlrausch’s law, mobility

of ions and transport number, conductometric titrations, Debye-Hückel theory and activity coefficient, determination of activities, application of conductance measurement. 

 Electrochemistry: Redox  reactions,  spontaneous  reactions,  electrochemical  cells,  standard

electrode potentials,  liquid  junction potential,  electrochemical  series, Nernst’s equation,  thermodynamic  of  redox  reactions, measurement  of  pH  and  pKa, dynamic electrochemistry, Latimer Diagram, Frost Diagram, electrolytic  cells, potentiometry,  reference  and  indicator  electrodes,  voltammetry,  fuel  cells, corrosion and its prevention, fuel cell and hydrogen economy. 

 Surface Chemistry: Interfaces, Gibbs surface excess, curved surfaces, capillary action, adsorption and  adsorption  isotherms,  Freundlich  and  Langmuir  adsorption  isotherms, catalysis, colloids, emulsion and their industrial applications.

Nuclear Chemistry: Atomic  nucleus,  nuclides,  nuclear  stability,  modes  of  decay,  nuclear energetics, nuclear models (shell + liquid drop model), fusion and fission, non-spontaneous nuclear processes, nuclear reactors, beta decay systematic.

Lab.

Spectroscopic determination of Cu percentage in the given sample. Conductometric determination of Cu (II)- EDTA mole ratio in the complex. To determine the effectiveness of an extraction of I2 solution by using Solvent Extraction method. Determination of molecular weight of a polymer by viscosity method. Determination of percentage composition of KMnO4/ K2Cr2O7 in a given solution by spectrophotometry. Evaluation of pKa value of an indicator by spectrometric method. Conductometric determination of hydrolysis constant (Kh) of conjugate base of a weak acid.

 

Recommended Books:

  1. Silbey, R. J., Alberty, R. A. and Bawendi, M. G.,  Physical Chemistry, 4th ed., John-Wiley & Sons, (2005).
  2. Ball D. W., Physical Chemistry, Brooks/Cole Co. Inc., (2003).
  3. Vertes, A., Nagy, S. and Klencsar, Z., Handbook of Nuclear Chemistry. Volume 1: Basics of Nuclear Science, 1sted., Springer, (2003).
  4. Choppin, G., Liljenzin, J-. O. and Rydberg, J., Radiochemistry and Nuclear Chemistry, 3rd ed., Butterworth- Heinemann, (2002).
  5. Loveland, W., Morrisey, D. J. and Seaborg, G. T., Modern Nuclear Chemistry, John-Wiley & Sons, Inc., (2006).
  6. Atkins, P. and Paula, J. D., Atkin’s Physical Chemistry, 9th ed., Oxford University Press, (2010).
  7. Somorjai, G. A. and Li, Y., Introduction to Surface Chemistry and Catalysis, 2nd ed., John-Wiley & Sons, Inc., (2010).
  8. Laidler. K. J., “Chemical Kinetics” 3rd ed., Prentice Hall, (1987).
  9. Atkins, P., Jones, L., Chemical Principles: The Quest for Insight, 5th ed., W. H. Freeman, New York, (2010).
  10. James, A. M., Prichard, F. E., Practical Physical Chemistry, 3rd ed., Longman Group Limited, New York, (1974).

Course Title: ANALYTICAL CHEMISTRY

Credit Hours: 4(3-1)

 

Course Content:

Electro-analytical Techniques

Introduction to Electro-analytical Techniques,

Potentiometry

Electrode potential, Nernst equation and its use for measuring half-cell potential, formal potential, liquid junction potential, different kinds of electrodes including glass and calomel electrodes, working of potentiometer and its applications including pH measurements, Ion selective electrode systems, Ion exchange membrane electrode, Potentiometric titrations.

Voltammetry and Polarography

Basic principle, voltammogram, polarizable and non-polarizable electrodes, solid electrodes, their scope and limitations, types of voltammetry, voltammetric equation, basic concept of polarography and interpretation of various polarographic curves, polarographic current and potential, derivation of Ilkovic equation, types of polarography, polarographic analysis

Amperometry and Conductometry

 Basic concept of amperometry and conductometry. Amperometric and conductometric titration.

Thermal method of analysis

Introduction, instrumentation, sources of errors, interpretation of data, Factors affecting curve, applications of TGA, DTA and DSC.

Lab

  • To determine pKa values for the given samples of weak acids by potentiometric method.
  • Quantitative determination of sodium hydroxide by potentiometric titration.
  • Determination of solubilty, Ksp and thermodynamic parameters of Ca(OH)by pH-metric method.
  • Four experiment will carried out by using conductometric methods and other techniques

Recommended Books:

  1. Skoog, D. A., West, P. M., Holler, F. J., Crouch, S. R., Fundamentals of Analytical Chemistry, 9th ed., Brooks Cole Publishing Company, (2013).
  2. Harris, D. C., Quantitative Chemical Analysis, 8th ed., W. H. Freeman and Company, New York, USA, (2011).
  3. Christian, G. D., Analytical Chemistry, 6th ed., John Wiley and Sons, New York, (2006).
  4. Kellener. R, Mermet. J. M., Otto, M., Valcarcel, M., Widmer, H.M., Analytical Chemistry: A Modern Approach to Analytical Science, Wiley. VCH, (2004)
  5. Monk, P.M.S, Fundamentals of Electroanalytical Chemistry, John-Wiley & Sons Ltd, England, (2001).
  6. Braun, R. D., Introduction to Chemical Analysis, International Student Editon, (1985).
  7. Haines, P. J., Whitby, On Canada McgrawHil Ltd., Thermal Methods of Analysis Principles, Aplications and Problems, 1st ed., Springer, (195).

Course Objectives:

Students will acquire sound knowledge regarding the theoretical principles and instrumentation of different electro-analytical techniques and thermal methods as well as learn about the applications of these techniques in the field of chemical sciences

 

BS 4thYEAR (Semester-VII)

S. No.

Title

Course

Credit Hours

1

Heterocyclic & Organometallic compounds

 

3(3-0)

2

Reactive Intermediates

 

3(3-0)

3

Organic Spectroscopy

 

3(3-0)

4

Lab-I

 

1(0-1)

5

Advanced Practical (non-thesis)

 

2(0-2)

6

Research Project (thesis)

 

3(0-3)

7

Research Methodology

 

3(3-0)

Total Credit Hours

16/15 (non-thesis)

 

Course Title: HETEROCYCLIC AND ORGANOMETALLIC COMPOUNDS

Credit Hours: 3(3-0)

Course Content:

Aromatic Heterocycles:

Structure, classification and nomenclature; aromaticity; basicity and acidity of the nitrogen heterocycles; synthesis and reactions, chemistry of furan, pyrrole and thiophene, pyridine;

Organometallic Compounds:

Principles, organomagnesium, organolithium, organocopper, organocadmium, organomercury and organozinc compounds: their structure and reactivity, methods of preparation and synthetic applications.

Chemistry of organic compounds containing sulfur, phosphorus, boron and silicon: synthesis, reactions and application.

Recommended Books:

  1. Claydem, J., Greeves, N. and Warren, S., Organic Chemistry, 2nd ed., Oxford University Press, (2012).
  2. Coxon, J. M. Norman, R. O. C., Principles of Organic Synthesis, 3rd ed., CRC Press, (1993).
  3. Joule, J. A., Mills, K., Heterocyclic Chemistry, 5th ed., John-Wiley & Sons, UK, (2010).
  4. Crabtree, R. H., The Organometallic Chemistry of the Transition Metals, 5th ed., John-Wiley & Sons, New Jersey, (2009).
  5. Li, Jie Jack Corey, E. J. Comprehensive Name Reactions, Volume 6: Name Reactions in Heterocyclic Chemistry, Publisher: John Wiley & Sons, NJ, USA, (2011).
  6. Quin, Louis D. Tyrell, John, Fundamentals of Heterocyclic Chemistry: Importance in Nature and in the Synthesis of Pharmaceuticals, Publisher: John Wiley & Sons, Incorporated, NJ, USA (2010).
  7. Li, Jie Jack, Heterocyclic Chemistry in Drug Discovery, Publisher: John Wiley & Sons, Oxford, GBR (2013).
  8. Eicher, Theophil Hauptmann, Siegfried Speicher, Andreas, Chemistry of Heterocycles: Structure, Reactions, Synthesis, and Applications, Publisher: John Wiley & Sons, Somerset, NJ, USA (2013).
  9. Petrov, Viacheslav A. Fluorinated Heterocyclic Compounds Synthesis, Chemistry, and Applications, Publisher: John Wiley & Sons, Location: Hoboken, NJ, USA (2009).
  10. Haiduc, Ionel Zuckerman, Jerry J. Basic Organometallic Chemistry : Containing Comprehensive Bibliography, Publisher: Walter de Gruyter, Location: Berlin, DEU (2011).
  11. Tanaka, Ken. Transition-Metal-Mediated Aromatic Ring Construction, Publisher: John Wiley & Sons, Location: Somerset, NJ, USA (2013).
  12. Haiduc, Ionel Zuckerman, Jerry J. Basic Organometallic Chemistry : Containing Comprehensive Bibliography, Publisher: Walter de Gruyter, Location: Berlin, DEU (2011).

Course Objectives:

Students will acquire knowledge about C-Hetero atom bond with emphasis on how it is formed and how it reacts. The importance and applications of compounds containing hetero atom should also be discussed.

 

Course Title: REACTIVE INTERMEDIATES

Credit Hours: 3(3-0)

Course Content:

Reactive Intermediates:

Carbocations, carbanions, free radicals, carbenes, nitrenes, and arynes, their generation, stability, reactions and synthetic applications. Chemistry of Enolates and Enols: Acidity of carbonyl compounds, enolization of carbonyl compounds, α-halogenation of carbonyl compounds; aldol-addition and aldol-condensation, condensation reactions involving ester enolate ions, alkylation of ester enolate ions.

Rearrangement Reactions:

Types of rearrangements, general mechanisms of nucleophilic, free radical and electrophilic rearrangements, hydrogen and/or carbon migration to electron-deficient carbon, nitrogen and oxygen, carbon migration to electron-rich carbon, aromatic rearrangements, inter- and intra-molecular carbon migration from oxygen to carbon.

Recommended Books:

  1. Clayden, J., Greeves, N. and Warren, S., Organic Chemistry, 2nd ed., Oxford University Press, (2012).
  2. Coxon, J. M. and Norman, R.O.C., Principles of Organic Synthesis, 3rd ed., Chapman and Hall, UK, (1993).
  3. Brown, W. H., Fotte, C. S., Iverson, B. L. and Anslyn, E. V., Organic Chemistry, 6th ed., Brooks/Cole Learning, (2012).
  4. John, E. M., Organic Chemistry, 8th ed., Brooks/Cole Publishing Co., USA, (2012).
  5. Robert, T. M. and Robert, N. B., Organic Chemistry, 6th ed., Prentice Hall, New Jersey, (1992).

Course Objectives:

Students will acquire knowledge regarding the rearrangement reactions and their types including some name reactions, and different intermediates involved in organic reactions. Students are expected to learn the underlying concepts and synthetic applications.

 Course Title: ORGANIC SPECTROSCOPY

Credit Hours: 3(3-0)

Course Content:

UV-Visible: Basic concepts, electronic transitions, Lambert-Beer’s law, factors influencing the lambda max (λmax) values, Woodward rules for calculation of wavelength values.

IR spectroscopy: Basic concepts, absorption mechanisms, functional group determination and factors affecting the absorption frequencies.

1H-NMR and 13C-NMR: Chemical shift, factors affecting chemical shift, spin relaxation, spin-spin coupling, coupling constants, nuclear overhauser effect, 2-D NMR, COSY and HETCOR.

Mass Spectrometry: Basic concepts; mass spectrometers, ionization techniques, different fragmentation patterns and structure elucidation, combined usage of IR, UV, NMR and Mass spectrometric data for structure elucidation of organic compounds having medium complexity.

Recommended Books:

  1. Mohan, J., Organic Analytical Chemistry: Theory and Practice, 1st ed., Alpha Science Int. Ltd., (2003).
  2. Kalsi, P. S., Spectroscopy of Organic Compounds, 6th ed., New Age International, New Delhi, India, (2007).
  3. Yadav, L. D. S., Organic Spectroscopy, Springer, UK, (2005).
  4. Kemp, W., Organic Spectroscopy, 3rd ed., W. H. Freeman & Company, New York, USA, (1991).
  5. Younas, M., Organic Spectroscopy, IlmiKitabKhana, Urdu Bazar Lahore, Pakistan, (2006).
  6. Hollas, J. M., Modern Spectroscopy, 4th ed., John-Wiley & Sons, Inc., (2004).
  7. Pavia, D. L., Lampman, G. M., Kriz, G. S. and Vyvyan, J. R., Introduction to Spectroscopy, 4th ed., Brooks/ Cole Cengage Learning, (2009).
  8. Silverstein, R. M., Webster, F. X. and Kiemle, D., Spectrometric Identification of Organic Compounds, 7th ed., John-Wiley & Sons, Inc., (2005).
  9. Williams, D. H. and Flemming, I., Spectroscopic Methods in Organic Chemistry, 6th ed., McGraw-Hill Higher Education, (2008).

Course Objectives:

Students will acquire an adequate knowledge about fundamental and instrumental aspects of different spectroscopic techniques and will be able to perform structural elucidation of organic compounds using spectral data.
Course Title: Lab-I

Credit Hours: 1(0-1)

Course Content:

Course Contents:

Experiments based on available spectroscopic techniques may be arranged, both of qualitative and quantitative nature. One- and two-step synthesis using available starting material are recommended.

Recommended Books:

  1. Mohan, J., Organic Analytical Chemistry: Theory and Practice, 1st ed.,Alpha Science Int.Ltd., (2003).
  2. Williams, D. H. and Flemming, I., Spectroscopic Methods in Organic Chemistry, 6th ed., McGraw-Hill Higher Education, (2008).
  3. Pavia, D. L., Kriz, G. S., Lampman, G. M. and Engel, R. G., A Microscale Approach to Organic Laboratory Techniques, 5th ed., Brooks/Cole Laboratory Series, Cengage Learning, (2013).
  4. Furniss, B. S., Hannaford, A. J., Smith, P. W. G., Tatchell, A. R., Vogel’s Textbook of Practical Organic Chemistry, 5th edition, Longman, UK, (1989).

 

Course Title: Advanced Practical (for non-thesis students)

Credit Hours: 2(0-2)

Course Content:

  1. Base catalyzed aldol condensation (Synthesis of dibenzalpropanone)
  2. Coenzyme catalyzed benzoin condensation (Thiamine hydrochloride catalyzed synthesis of benzoin)
  3. Isolation of Caffeine from Pepsi Cola
  4. Isolation of Nicotine from tobacco
  5. Extraction of Eugenol from Clove Oil
  6. Isolation of Caffeine from tea leaves
  7. Esterification-(synthesis of ester from given acid)
  8. Green photochemical reaction (Photoreduction of benzophenone to benzopinacol)
  9. Acetal or ketal formation Synthesis of acetal or ketal
  10. Rearrangement reaction (Rearrangement of diazoaminobenzene to p-aminoazobenzene)
  11. Green oxidation reaction (Synthesis of any compound based on availability of reactants)

Recommended Books:

  1. Experimental Organic Chemistry by James F. Norris, Mcgraw-Hill Book Company, Inc. New York:
  2. Laboratory Methods Of Organic Chemistry By L. Gattermann Completely Revised By HinrichWiel And Translated From The Twenty-Fourth German Edition By W. Mccartney, Ph.D.(Edin.), A. I. C., New York T H E Macmillan Company

Course Title: Research Project ( For Thesis students)

 

Course Title: RESEARCH METHODOLOGY

Credit Hours: 3(3-0)

Course Content:

  1. INTRODUCTION TO RESEARCH; A. Key Objectives of Research, B. Motivation to do Research, C. Thesis Research, D. Importance of Research.
  2. RESEARCH METHODS AND RESEARCH METHODOLOGY; A. Research Methods, B. Research Methodology, 1. Importance of Research Methodology in Research Study.

III. TYPES OF RESEARCH; A. Basic Research, B. Applied Research, C. Normal and Revolutionary Researches, D. Quantitative and Qualitative Methods, E. Other Types of Research:

  1. ENTERING INTO RESEARCH:
  2. VARIOUS STAGES OF A RESEARCH:
  3. SELECTION OF A RESEARCH TOPIC AND PROBLEM; A. Choosing a Research Topic, B. Identification of a Research Topic and Problems, C. Definition and Formulation of a Problem, D. Characteristics of a Good Problem, E. Importance and Relevance of Questions to a Researcher:

VII. LITERATURE SURVEY: VIII. THE INTERNET AS A MEDIUM FOR RESEARCH: IX. REFERENCECOLLECTION: X. ASSESSING THE CURRENT STATUS: XI. HYPOTHESIS: XII. MODE OF APPROACH; A. Research Design, B. The Possible Approaches to be followed by a Researcher, 1. Independent Research, 2. Doubt, 3. Complete Focus, 4. Maintaining Ties, C. Getting Joy in Doing Research, D. Crucial Stage of Ph. , E. The Attributes of a Research Scholar

XIII. ACTUAL INVESTIGATION IN RESEARCH WORK; A. Key Points to do a Good Research:

XIV. RESULTS AND CONCLUSION: XV. PRESENTING A SCIENTIFIC SEMINAR-ORAL REPORT; A. Oral Report B. The Importance of an Oral Report, C. Points to be remembered in Preparing an Oral Report:

XVI. ART OF WRITING A RESEARCH PAPER AND THESIS; A. Research Report, B. Research Paper or Article and Ph.D Thesis or Dissertation, C. Need of Reporting Research Findings, D. Characteristics of a Good Report:

XVII. OUTLINE OF A REPORT; A. First Draft, B. Second Draft, C. Third Draft:

XVIII. LAYOUT OF A RESEARCH REPORT/PH.D. THESIS/M.PHIL. DISSERTATION; A. Preliminary Pages, B. Main Text , 1. Introduction, 2. Actual Research Work, 3. Conclusion, C. End Matters, 1. Appendices, 2. References/Bibliography, D. Typing the Report

Recommended Books:

  1. Garg B. L., Karadia, R., Agarwal, F. and Agarwal, U. K., 2002. An Introduction to Research Methodology, RBSA Publishers.
  2. Kothari, C.R., 2008. Research Methodology: Methods and Techniques. Second Edition. New Age International Publishers, New Delhi.
  3. Sinha, S.C. and Dhiman, A.K., 2002. Research Methodology, EssEss Publications. 2 volumes.
  4. Trochim, W.M.K., 2005. Research Methods: the concise knowledge base, Atomic Dog Publishing. 270 p.
  5. Day RA 1992. How to Write and Publish a Scientific Paper. Cambridge University press. London
  6. Singh, Y. K. 2006. Fundamentals of Research Methodology and Statistics, ISBN : 978-81-224-1886-6
  7. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers’ Distributors
  8. Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nd.ed.), Singapore, Pearson Education.

Course Objectives:

This course covers the general principles of Research Methodology that are applicable to any discipline. It discusses the fundamental process in conducting an academic research. The theoretical and practical aspects of preparing a research proposal presented. Amongst topics that will be covered are introduction to research and its philosophy, problem formulation and research objective, literature review, research methodology and design, data collection procedures, data analysis, research proposal and thesis preparation and research management.

BS 4th YEAR (Semester-VIII)

 

S. No.

Title

Course

Credit Hours

1

Medicinal Chemistry

 

3(3-0)

2

Natural Products

 

3(3-0)

3

Organic Synthesis

 

3(3-0)

4

Lab-II

 

1(0+1)

5

Stereochemistry

 

3(3+0)

6

Lab Techniques (non-thesis)

 

4(3+1)

7

Research Project (thesis)

 

3(0+3)

Total Credit Hours

16/17 (non-thesis)

 Course Title:     MEDICINAL CHEMISTRY  

Credit Hours:     3      

 

Course Objectives: Students  will  acquire  knowledge  and  learn  about  the  nature,  types  and properties of drugs and medicines, and the role of an organic chemist in drug designing and drug discovery.

Course Contents: Chemistry of biomolecules;  introduction  to drugs and drug discovery, sources of  therapeutic  agents,  structure  activity  relationship  (SAR),  drug-receptor interaction,  ,  drug  formulation  and  its  methods,  different  types  of  drugs; chemistry and modes of action of some common drugs.

 

Recommended Books:

  1. Paul, M. D., Medicinal Natural Products: A Biosynthetic Approach, 3rd ed., Medicinal Natural Products, John-Wiley & Sons, Ltd, (2009).
  2. Wolff, M. E., Burger’s Medicinal Chemistry, 4th ed., Part III, John-Wiley & Sons, New York, (2006).
  3. Williams, D. A. and Lemke, T. L., Foye’s Principles of Medicinal Chemistry, 6th ed., Lippincott Williams & Wilkins, New York, (2008).
  4. D. Sriram, P. Vogeeswari, Medicinal Chemistry, 2nd ed., BITS Pilani, Pearson, Publisher: Darling Kindernley, India, (2010).
  5. Carins D., Essential of Pharmaceutical Chemistry, 3rd ed., Pharmaceutical Press, London, (2008)

 Course Title:     NATURAL PRODUCTS   

Credit Hours:     3    

Course Objectives: Students will acquire knowledge about different types of natural products with emphasis on their structure, synthesis and applications.

 

Course Contents:

Alkaloids:Introduction,  classification,  isolation  methods,  structure  elucidation  and discussion  with  particular  reference  to  structure  and  synthesis  and biosynthesis of typical alkaloids such as ephedrine, nicotine, atropine, quinine, papaverine and morphine. 

Terpenoids: Introduction, classification,  isolation  techniques and discussion with particular reference  to  structure  and  synthesis  and  biosynthesis  of  typical  terpenoids such as citral, α-terpineol, α-pinene, camphor and α-cadinene. 

 Steroids: Study of cholesterol and steroidal hormones with emphasis on their structure and biosynthesis. 

 Flavonoids: Introduction and classification of flavonoids, general biosynthetic pathway, Synthesis of flavone, flavonol and cyanidin. 

 

Recommended Books:

  1. Dewick, P. M., Medicinal Natural Products: A Biosynthetic Approach, 3rd ed., Medicinal Natural Products, John-Wiley & Sons, Ltd., (2009).
  2. Sell, C. S., A Fragrant Introduction to Terpenoid Chemistry, The Royal Society of Chemistry, UK, (2003).
  3. De la Rosa, L. A., Parrilla, E. A. and Aguitar, G. A. G., Fruit and Vegetable Phytochemicals: Chemistry, Nutritional Value and Stability, Wiley-Blackwell, (2009).
  4. Shahidi, F. and Naczk M., Phenolics in Food and Nutraceuticals, CRC Press, (2004).
  5. Oyvind, M. A., and Kenneth, R. M., Flavonoids: Chemistry, Biochemistry and Applications, CRC, Taylor & Francis, New York, (2010).
  6. Finar, I. L., Organic Chemistry, Vol. 2, Stereochemistry and the Chemistry of Natural Products, 5th ed., Pearson Education Ltd., Delhi, (2008).
  7. Hesse, M., Alkaloid Chemistry, John-Wiley & Sons, New York, (1981). 69
  8. Bhat, S. V., Nagasampagi, B. A. and Sivakumar, M., Chemistry of Natural Products, Narosa Publishing House, (2005). 

 

Course Title:     ORGANIC SYNTHESIS

Credit Hours:     3      

Course Objectives: Students  will  acquire  knowledge  and  understanding  to  design  protocols  for synthesis of small  to medium sized organic compounds and be able  to carry out  retrosynthetic analysis, and propose alternative  reactions  to synthesize a compound.

 

Course Contents: Principles and importance of organic synthesis, Introduction to retrosynthesis

and disconnection approach, synthesis of aromatic compounds; one and  two group  carbon  C-X  disconnections,  donor  and  acceptor  synthons,  C-C disconnections and 1,2-, 1,3-, 1,4-, 1,5- and 1,6- difunctionalized compounds, synthesis  of  cyclic  compounds  (3-6  membered),  chemo-,  regio-  and stereoselectivity. 

Synthetic strategies: Functional  group  protection:  hydroxyl,  amino,  carbonyl,  carboxylic,  sulfanyl, C=C, solid phase synthesis, phase-transfer catalysis.

 

Recommended Books:

  1. Warren, S. and Wyatt, P., Workbook for Organic Synthesis: The Disconnection Approach, 2nd ed., John-Wiley & Sons, Inc., (2010).
  2. Fox, M. A. and Whitsell, J. K., Organic Chemistry, 3rd ed., Jones & Bartlett Publishers (1997).
  3. Clayden, J., Greeves, N., and Warren, S., Organic Chemistry, 2nd ed., Oxford University Press, New York, (2012).
  4. Loudon, M., Organic Chemistry, 5th ed., Roberts Company Publishers, (2009).
  5. Smith, J. G., Organic Chemistry, 3rd ed., McGraw-Hill, (2010).
  6. Norman, R. O. C. and Coxon, J. M., Principles of Organic Synthesis, 3rd ed., CRC Press, (1993).

 

Course Title:     Lab-II  

Credit Hours:     1  

 Course Contents: Experiments based on isolation of natural products from plants are

recommended. These may  include  isolation  of  caffeine  from  tea,  isolation  of nicotine  from  tobacco,  isolation  of  carvone  from  mint,  isolation  of  limonene from orange peels, isolation of piperine from black pepper, etc. Experiments involving multi-step synthesis may also be included, such as the synthesis of methyl orange. 

 Literature survey for Laboratory work is to be carried out during the course of studies. 

 

Recommended Books:

  1. Clarke, H. T., A Handbook of Organic Analysis-Qualitative and Quantitative, John-Wiley & Sons, New York, (2007).
  2. Mann, F. G. and Saunders, B. C., Practical Organic Chemistry, 4th ed., Longman, London, (1960).
  3. Vogel, A. I., Elementary Practical Organic Chemistry Part 3: Quantitative Organic Analysis, Longman, London, (1987).
  4. Furniss, B. S., Hannaford, A. J., Smith, P. W. G. and Tatchell, A. R., Vogel’s Text Book of Practical Organic Chemistry, 5th ed., National Book Foundation, Islamabad, (2008).
  5. Shriner, R. L., Hermann, C. K. F., Morrill, T. C., Curtin, D. Y. and Fuson, R. C., The Systematic Identification of Organic Compounds, 7th ed., John-Wiley & Sons, (1997).
  6. Mendham, J., Denney, R. C., Barnes, J. D. and Thomas, M. J. K., Vogel’s Text Book of Chemical Analysis, Prentice Hall, (2000).
  7. Beckett, A. H. and Stenlake, J. B., Practical Pharmaceutical Chemistry, Part II, 4th ed., Continuum International Publishing Group, (1988).

 

Course Title:     Stereochemistry

Credit Hours:     3 (3+0)     

Course content: Introduction; classification of isomerism; optical isomerism: optical activity, chirality and optical  activity, symmetry elements and optical inactivity, relative and absolute  configuration,  R,S notation, method of determining configuration, racemic mixtures  and their  resolution, asymmetric  synthesis, optical activity  in biphenyls, allenes and spiro compounds, stereospecific  and stereoselective reactions; geometrical isomerism: determination  of configuration of geometrical isomers, Z,E convention and  cis trans  isomerism in cyclic  systems; conformational isomerism:   conformational analysis of mono-substituted cyclohexanes,

di-substituted cyclohexanes and decalin systems.

 

Recommended Literature

(Latest available editions of the following books)

  1. Eliel, E. L., Wilen, S. H.  and Doyle, M. P., “Basic Organic Stereochemistry”, Wiley-Interscience, New York.
  2. Loudon, G. M., “Organic Chemistry”, Oxford University Press, New York.
  3. March, J., “Advanced Organic Chemistry”, John Wiley & Sons, New York.
  4. Morrison, R. T. and Boyd, R. N., “Organic Chemistry”, Prentice-Hall of India, New Delhi.

 Subject: Lab Techniques         (for non-thesis students)                      

Credit Hours: 4(3-1)   

 

Course Content:

Introduction to Good laboratory Practices (GLP) and Thesis Research:

Laboratory directions, laboratory note book maintenance, calculation of yields,

Preparations of solutions, awareness of a safety protocol, purification of solvents,

Criteria for purity and safe storage, Soxhlet extractions.

Classification of Chemical Analysis:

Classical methods and instrumental analysis (instrumental methods of chemical analysis vs classical techniques).

Analytical Separations:

(chemical equilibrium + detectors) Gas chromatography,

Liquid chromatography, ion chromatography, supercritical fluid chromatography. Electrophoresis and capillary electrochromatography. Electro- analytical methods: (chemical potential + electrons), coulometry,  Voltammetry, potentiometry.

Analytical Spectroscopy:

(chemical energy + photons), absorbance, fluorescence, Phosphorescence, infrared, atomic absorption/atomic emission, inductively coupled plasma.

Practical training on the Operation and Use of the Following Analytical Equipments:

UV spectrophotometer.

 

Recommended Books:

  1. Harris D. C, Quantitative Chemical Analysis (2007), W.H. Frecman& Co.
  2. Skoog H and Nieman A., Principles of Instrumental Analysis, 5th Edition (1998), Harcourt Brace Publishers, New York.
  3. Wilcox C. F. Jr., Experimental Organic Chemistry (1984), Mac Millan Publishing Company, New York
  4. Furniss B.S., Hannaford A.J., Rogers V., Smith P.W.G., and Tatchell A.R., Vogel’s Textbook of Practical Organic Chemistry (1986) English Language Book Society, Longman
  5. Simpson C.F., Practical High Performance Liquid Chromatography (1979) Hayden and Sons, London.
  6. Quayle A., Advances in Mass Spectrometry, Vol. 1 to 8 (1980) Hayden & Sons Ltd, London
  7. Atta-ur-Rahman, One-and Two-Dimensional NMR Spectroscopy (1989) Elsevier Science Publishers, Amsterdam.
  8. Bailey P.S., Laboratory Experiments for Organic Chemistry, A Brief Survey of Concepts and Applications (1978) Allyn and Bacon, Inc., Boston.
  9. Seiler J.P., Good Laboratory Practice: the Why and the How, 2nd Edition (2005), Springer.
  10. Christian G.D., Analytical Chemistry, 6th Edition (2004), Wiley & Sons (Asia) Pvt. Ltd.

 Course Title:    Research Project (For Thesis Students)

Credit Hours:     3 (3+0)     

 

SPECIALIZATION IN INORGANIC CHEMISTRY- 2019

(BS-VII/VIII )

 

Complete Scheme of study:

Semester

Course Title

Credit Hours

 

 

 

 

BSVII/

(Inorganic

 Chemistry)

 

1

Inorganic Reaction Mechanism

3(3-0)

2

Inorganic Spectroscopy/Bioinorganic chemistry

3(3-0)

3

Absorption Spectroscopy

3(3-0)

4

Lab-I (Inorganic chemistry)

1(0-1)

5

Advanced practical-I

(Non-Thesis)

3(0-3)

6

Research Project (Thesis)

3(0-3)

7

Research Methodology

3(3-0)

Total

16 (12-4)

 

 

 

 

BSVIII/

(Inorganic

Chemistry)

 

8

Symmetry and Group Theory/ Organo-metallic Chemistry

3(3-0)

9

Advanced Separation techniques

3(3-0)

10

Instrumental methods of Structural Analysis

3(3-0)

11

Lab-II

1(0-1)

12

Advanced practical-II (Inorganic chemistry)

(Non-Thesis)

3(0-3)

13

Research Project (Thesis)

3(0-3)

14

Food and Drug Analysis (Optional)

3(3-0)

Total

16(12-4)

 

 

 

 

 

 

Semester-VII (INORGANIC CHEMISTRY)

Course Title: INORGANIC REACTION MECHANISM

 Credit Hours: 3

Course Objective:

Students will acquire know-how and understanding about different mechanisms of inorganic reactions and their applications towards understanding different types of complexes.

Course Contents:

Classification of reaction mechanisms; rate laws; steady state approximation; inert and labile complexes; substitution reactions in octahedral complexes and square planar complexes, acid hydrolysis, base hydrolysis, steric effects of inert ligands, nucleophilic reactivity, trans-effect, cis-effect, racemization reactions. Mechanism of electron transfer reactions, oxidation reduction reactions of metal ions, outer and inner sphere mechanisms, factors affecting rate of electron transfer reactions, two electrons transfer reactions, complementary or non-complementary electron transfer reactions, oxidative addition, addition of oxygen, hydrogen, HX, organic halides and bimetallic species, Reductive Elimination Reactions.

 

Recommended Books:

  1. Huheey, J. E., Keiter, E. A., Keiter, R. L., Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed., Prentice Hall, (1997).
  2. Shriver, D. F., Atkins, P. W., Inorganic Chemistry, 3rd ed., Oxford University Press, (2001).
  3. Wilkins, R. G., Kinetics and Mechanism of Reactions of Transition Metal Complex, 2nd ed., (Rev.), Wiley-VCH, (1991).
  4. Jolly, W. L., Modern Inorganic Chemistry, 2nd ed., McGraw-Hill Company, (1991).
  5. Jordan, R. B., Reaction Mechanisms of Inorganic and Organomettalic Systems, 2nd ed., Oxford University Press, New York, (1998).
  6. Atwood, J. D., Inorganic and Organometallic Reaction Mechanisms, 2nd ed., Wiley VCH, Inc., (1997).
  7. Sharma, S. K., Inorganic Reaction Mechanisms, Discovery Publishing House, (2007).
  8. Housecraft, C. and Sharpe, A. G., Inorganic Chemistry, 4th ed., Prentice Hall, (2012).
  9. Miessler, G. L. and Tarr, D.A., Inorganic Chemistry, 4th ed., Pearson- Prentice Hall International, (2010).

 

Semester-VII (INORGANIC CHEMISTRY)

Course Title:       INORGANIC SPECTROSCOPY/ BIOINORGANIC CHEMISTRY

Credit Hours: 3

Course Objectives:

Students will acquire understanding about various types of transitions (e. g. dd transition, charge transfer) occurring in transition metal compounds and to characterize new compounds by application of electronic spectroscopy.

Course Contents:

Inorganic Spectroscopy:

Electronic States of transition metal complexes, Russel-Sander's coupling scheme, derivation of term symbols for d1-d10 systems, d-d transitions, connecting atomic states and molecular states, correlation diagrams, Tanabe - Sugano diagrams, calculation of 10Dq values, High-spin and low-spin molecules, Jahn-Teller effect, applications of subgroups, selection rules for electronic transitions in molecules, LMCT and MLCT transitions, some examples involving different geometries.

Magnetochemistry:

Theory of magnetism, diamagnetism, paramagnetism, ferro, ferri and antiferromagnetism, magnetic susceptibility, magnetic moments, Faraday’s &Gouy’s methods, effect of temperature on magnetic properties of complexes.

Bioinorganic Chemistry: 

Introduction, Elements and their rule in biological systems, Metal storage and transport: Fe, Cu, Zn and Iron storage and transport Metallothioneins: transporting some toxic metals , Dealing with O2 , Haemoglobin and myoglobin,  Haemocyanin, Haemerythrin, Cytochromes , Biological redox processes, Blue copper proteins The mitochondrial electron-transfer chain, Iron–sulfur proteins Cytochromes, The Zn2+ ion: Nature’s Lewis acid Carbonic anhydrase II, Carboxypeptidase Carboxypeptidase, Cobalt-for-zinc ion substitution.

 

Recommended Books:

  1. Yarwood, J., Bazin, P., and Douthwaite, R., Spectroscopic Properties of Inorganic and Organometallic Compounds, Volume 42, The Royal Societyof Chemistry, UK, (2011).
  2. Lever, A. B. P., Inorganic Electronic Spectroscopy, 2nd ed., Elsevier, UK, (1984).
  3. Brisdon, A. K., Inorganic Spectroscopic Methods, Oxford University Press, UK, (1998).
  4. Solomon, E.I., Inorganic Electronic Structure and Spectroscopy: Methodology, Volume 2, Wiley, New York, (1999).
  5. Huheey, J. E., Keiter, E. A., Keiter, R. L., Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed., Prentice Hall, (1997).

6.. Shriver, D. F., Atkins, P. W., Inorganic Chemistry, 3rd ed., Oxford University Press, (2001).

  1. R.W. Hay, Bioinorganic Chemistry, Ellis, Harwood, London (1991).
  2. D. F. Fenton, Bio-coordination chemistry, Oxford Primer series, Oxford University Press (1995).
  3. P. C. Wilkens, Inorganic Chemistry in Biology, Oxford Primer Series (No. 46), Oxford University Press (1995).
  4. Housecraft, C. and Sharpe, A. G., Inorganic Chemistry, 4th ed., Prentice Hall, (2012).
  5. Miessler, G. L. and Tarr, D.A., Inorganic Chemistry, 4th ed., Pearson- Prentice Hall International, (2010).

 

Semester-VII (INORGANIC CHEMISTRY)

Course Title: ABSORPTION SPECTROSCOPY

Credit Hours: 3

Course Objectives:

Students will acquire knowledge about theoretical aspects and instrumentation of different atomic spectroscopic methods as well as learn about the applications of these techniques in the field of chemical sciences.

Course Contents:

Luminescence Spectrophotometry:

Introduction, origin of fluorescence and phosphorescence spectra, Jablonski diagram, activation, deactivation, fluorescence spectrum, fluorescent and phosphorescent species; photoluminescence and structure, factors affecting fluorescence and phosphorescence, fluorescence quenching, quantum yield, instrumentation for fluorescence measurement, sources, wavelength selectors, sampling, detectors, read out devices, instrumentation for phosphorescence measurement, sampling, recording procedure, applications of fluorescence and phosphorescence.

Atomic Absorption Spectrophotometry:

Principle of atomic absorption spectrophotometry, concentration dependence of absorption, quantitative methodology, instrumentation for atomic absorption spectrophotometry, radiation sources, atomizers, flames, graphite furnaces and electrochemical atomizers, monochromators, detectors, handling background absorption, interferences in atomic absorption spectrophotometry, sample handling in atomic absorption spectrophotometry, preparation of the sample, use of organic solvents, microwave, digestion, sample introduction methods, applications of atomic absorption spectrophotometry.

Flame Photometry:

Origin and classification of atomic spectroscopic methods, origin of atomic spectrum, position of the signal, intensity of the signal, spectral line width, principle of flame photometry, fate of the sample in the flame, flame and its characteristics,instrumentation for flame photometry, merits and limitations.

Atomic Emission Spectrophotometry:

Introduction, principle of atomic emission spectrometry, atomic emission spectrometry using plasma sources, plasma and its characteristics, inductively coupled plasma, direct current plasma, microwave induced plasma, choice of argon as plasma gas, instrumentation for ICP-MS.

Recommended Books:

  1. Christian, G. D., Analytical Chemistry, 6th ed., John-Wiley & Sons, New York, (2006).
  2. Harris, D. C., Quantitative Chemical Analysis, 8th ed., W. H. Freeman and Company, New York, (2011).
  3. Kealey, D. and Haines, P. J., BIOS Instant Notes in Analytical Chemistry, Bios Scientific Publishers Limited, Oxford, UK, (2002).
  4. Sharma, B. K., Instrumental Methods of Chemical Analysis, 24th ed., Goel Publishing House, Meerut, India, (2005).
  5. Skoog, D. A. and West., D. M., Fundamentals of Analytical Chemistry, 8th ed., Hot Reinehart Inc., London, (2008).
  6. Ebdon,L., Evaus, E.H, Fischer, A., and Hill, S.J., An Introduction to Analytical Atomic Spectrometry, John Wiley & Sons, England. (1998).
  7. Bernhard Welz, Michael Sperling, Atomic Absorption Spectrometry, 3rd ed., Wiley-VCH, Germany, (1998).
  8. Farrukh, M. A., Atomic Absorption Spectroscopy, In Tech, (2012).
  9. Kellner, R., Mermet, J. M, Otto, M., Valcarcel, M., Widmer, H.M., Analytical Chemistry : A Modern Approach to Analytical Science, Wiley-VCH,(2004)

 

Semester-VII (INORGANIC CHEMISTRY)

Course Title: Lab-I (Inorganic chemistry)

Credit Hours: 1

Course Contents:

The resolution of cis-dichlorobis (ethylenediamine) chromium (III) chloride into its optical isomers. The preparation and resolution of the tris (ethylenediamine) cobalt (III) ion into its optical antipodes. Estimation of Al (III) and Fe (III) using 8 hydroxyquinoloine. Estimation of Ni (II) in the presence of Cu (II).

Determination of chloride in the presence of iodide and evaluation of Ksp of AgI and AgCl.

Determination of dissociation constant Ka for acetic acid.

Determination of Ni+2 ions by EDTA (Back titration).

Determination of Ca+2 and Zn+2 ions by EDTA (Masking titration).

Titration of strong acid and weak acid with a strong base.

Precipitation titration involving AgNO3 and KCl.

Recommended Books:

  1. Bassett, J., Denny, P. C., Jeffery, G. H., Mendham, J., Vogel’s textbook of Quantitative Inorganic Analysis, 4th ed., English Language Book Society,(1978).
  2. Pass, G., Sutcliffe, H., Practical Inorganic Chemistry: Preparation Reactions and Instrumental Methods, 2nd ed., Chapman and Hall, (1974).

 

Semester-VII (INORGANIC CHEMISTRY

Course Title:       ADVANCED LAB-I (for Non-Thesis)

Credit Hours: 3

This course comprised of instrumental methods of analysis of different analytes using different instrumentations. It is mandatory for the Non-thesis students.

 

Semester-VII (INORGANIC CHEMISTRY

Course Title:       RESEARCH PROJECT (Thesis)

Credit Hours: 3

This course is mandatory for thesis students. Students, who will take thesis, will be exempted from course .

Semester-VII (INORGANIC CHEMISTRY

Course Title:       RESEARCH METHODOLGY

Credit Hours: 3

This course have same list of contents as offered for specialization of Organic chemistry .

 

Semester-VIII (INORGANIC CHEMISTRY

Course Title: SYMMETY AND GROUP THEORY/ORGANOMETALLICS

Credit Hours: 3

Course Objectives:

Students will acquire knowledge about symmetry and group theory and chemistry of organometallics especially with reference to their types and bonding, and reactivity of organometallic compounds in homogeneous catalysis.

Course Contents:

Symmetry and Group Theory:

Symmetry and group theory, point groups, multiplication tables, group representation and development of character tables. Introduction to the interpretation of spectra and structure elucidation.

Organomettalics

Introduction of Pi acceptor ligands and metal carbonyle chemistry, Fundamentals of organometallic compounds, types of bonding in organometallics, single, double and triple bonds to carbon (compound types, acyls, alkylidene complexes and alkylidyne complexes), delocalized hydrocarbon systems (alkenes, olefins, allyl and butadienes), alkyne complexes, cyclic π-complexes (five and six membered rings). Homogeneous catalytic hydrogenation, dimerization, oligomerization, polymerization, hydroformylation of olefins, catalytic polymerization of acetylenes. Insertion reactions and uses of organometallic compounds in organic synthesis.

 

Recommended Books:

  1. Powell, P., Principles of Organometallics Chemistry, 2nd ed., Springer, (1998).
  2. Yamamoto A., Organotransition Metal ChemistryFundamental Concepts and Applications, 1st ed., John-Wiley & Sons, Inc., (1986).
  3. Cotton, F. A., Wilkinson, G., Murillo, C. A., Bochmann M., Advanced Inorganic Chemistry, 6th ed., Wiley-Intersceince, New York, (1999).
  4. Miessler, G. L., Fisher, P. J. and Tarr, D, A., Inorganic Chemistry, 5th ed., Prentice Hall, (2013).66
  5. Douglas, B., McDaniel, D. and Alexander, J., Concepts and Models of Inorganic Chemistry, 3rd ed., John-Wiley & Sons, Inc., (1994).
  6. Haiduc, I. and Zuckerman, J. J., Basic Organometallic Chemistry, Walter De Gruyter Inc., (1985).
  7. Jolly, W. L., Modern Inorganic Chemistry, 2nd ed., McGraw-Hill Company, (1991).
  8. Porterfield, W. W., Inorganic Chemistry: A Unified Approach, 2nd ed., Academic Press, (1993).
  9. Vincet, A., Molecular Symmetry and Group Theory: 2nd ed., John-Wiley & Sons, Ltd., (2001).
  10. Malik, W. U., Tuli, G. D., Madan, R. D., Selected Topics in Inorganic Chemistry, S. Chand and Co. Ltd., (2010).
  11. Housecraft, C. and Sharpe, A. G., Inorganic Chemistry, 4th ed., Prentice Hall, (2012).
  12. Carter, R. L., Molecular Symmetry and Group Theory, 1st ed., John-Wiley & Sons, Inc., New York, (1997).
  13. Orchin, M., Jaffe, H. H., Symmetry, Orbitals, and Spectra, John-Wiley & Sons, Inc., New York, (1971).
  14. McWeeny, R., Symmetry: An Introduction to Group Theory and its Applications, Dover Publications, Inc., (2002).
  15. Molloy, C. K., Group Theory for Chemist, Harward Publishing Ltd. (2007).
  16. Cotton, A. F., Chemical application of Group Theory, 3rd ed. John Wiley, New York (1990).
  17. Lever, A. B. P., Inorganic Electronic Spectroscopy, 2nd ed., Elsevier, UK, (1984).

 

Semester-VIII (INORGANIC CHEMISTRY

Course Title: ADVANCED SEPARATION TECNIQUES

Credit Hours: 3

Course Objectives:

Students will acquire knowledge about the principles and instrumentation of advanced chromatographic techniques namely GLC, HPLC and capillary electrophoresis along with their applications in different fields such as food, pharmaceuticals, petroleum, environmental and other industrial sectors.

Course Contents:

Introduction:

Classifications of chromatographic techniques, the chromatographic processes, rate theory of chromatography, Van-Deemter equation and its significance in evaluating column efficiency.

 

Gas Liquid Chromatography:

General principle, sample preparation/derivatization, separation process, and instrumental aspects and its applications.

HPLC:

General principle, sample preparation, separation process (normal phase and reverse phase separation), instrumentation, method development and applications.

Capillary electrophoresis:

Theory and principle of CE, mobility, electro-osmotic flow separation by CE, instrumentation, modes of operation, applications.

 

Recommended Books:

  1. Skoog, D. A., West, P. M., Holler, F. J. and Crouch, S. R., Fundamentals of Analytical Chemistry, 9th ed., Cengage Learning, (2013).
  2. Christian, G. D., Analytical Chemistry, 6th ed., John-Wiley & Sons, New York, (2004).
  3. Kealey, D. and Haines, P. J., BIOS Instant Notes in Analytical Chemistry, 1st ed., Taylor & Francis, (2002).
  4. Sharma, B.K. Instrumental Methods of Chemical Analysis, 24th ed., Goel Publishing House, Meerut, India, (2005).
  5. Grob, R. L., Eugene, F. Barry, Modern Practice of Gas Chromatography, 4th ed., John-Wiley & Sons, USA, (2004).
  6. Kellner, R., Mermet, J-. M., Otto, M., Valcarcel, M. and Widmer, H. M., Analytical Chemistry: A Modern Approach to Analytical Science, Wiley- VCH, (2004).
  7. Meyer, V. R., Practical High-Performance Liquid Chromatography, 5th ed., John-Wiley & Sons, Ltd., (2010).
  8. Lindsay, S., High Performance Liquid Chromatography, 2nd ed., John- Wiley & Sons, Ltd., (1992).
  9. Braitwaite, A. and Smith, F. J., Chromatographic Methods, 5th ed., Kluwer Academic Publishers, (1999).
  10. Miller, J. M., Chromatography: Concepts and Contrasts, 2nd ed., John- Wiley & Sons, Inc., (2005).
  11. Camilleri, P., Capillary Electrophoresis: Theory and Practice, 2nd ed., CRC Press, (1998).

 

Semester-VIII (INORGANIC CHEMISTRY

Course Title: INSTRUMENTAL METHODS OF STRUCTURAL ANALYSIS

Credit Hours: 3

Course Objectives:

Students will acquire an adequate knowledge about fundamental and instrumental aspects of different spectroscopic techniques and will be able to perform structural elucidation of organic/Inorganic compounds using spectral data.

Course Contents:

IR spectroscopy and Raman Spectroscopy:

Basic concepts, absorption mechanisms, functional group determination and factors affecting the absorption frequencies.

1H-NMR and 13C-NMR:

Chemical shift, factors affecting chemical shift, spin relaxation, spin-spin coupling, coupling constants, nuclear overhauser effect, 2-D NMR, COSY and HETCOR.

Mass Spectrometry:

Basic concepts; mass spectrometers, ionization techniques, different fragmentation patterns and structure elucidation, combined usage of IR, UV, NMR and Mass spectrometric data for structure elucidation of organic/inorganic compounds having medium complexity.

 

Electron Spin Resonance Spectroscopy

Theory, various techniques, application, problems, etc.

 

X-Ray Diffraction

Theory, various techniques, Instrumentation, application, problems etc.

 

Recommended Books:

  1. Hollas, J. M., Modern Spectroscopy, 4th ed., John-Wiley & Sons, Inc., (2004). 45
  2. Pavia, D. L., Lampman, G. M., Kriz, G. S. and Vyvyan, J. R., Introduction to Spectroscopy, 4th ed., Brooks/ Cole Cengage Learning, (2009).
  3. Silverstein, R. M., Webster, F. X. and Kiemle, D., Spectrometric Identification of Organic Compounds, 7th ed., John-Wiley & Sons, Inc.,(2005).

4.. Williams, D. H. and Flemming, I., Spectroscopic Methods in Organic Chemistry, 6th ed., McGraw-Hill Higher Education, (2008) etc.

 

Semester-VIII (INORGANIC CHEMISTRY

Course Title: Lab-II

Credit Hours: 1

 

Course Objectives:

Separation of hydrocarbons using GLC, Separation of essential oils, fatty acids, To determine pKa values for the given samples of weak acids by potentiometric method. Quantitative determination of sodium hydroxide by potentiometric titration. Preparation of buffer solutions of definite pH.Electrogravimetric determination of copper in given samples. Study of thermal decomposition of copper sulfate pentahydrate and calcium oxalate monohydrate. Determination of fat content in milk. Quantification of Proteins. Determination of cholesterol in food. Quantification of reducing sugars and total sugars. Water analysis for drinking purpose. Determination of caffeine. Determination of heavy metals in food items. Determination of citric acid in juices. Determination of ascorbic acid in fruit juices. Evaluation of Rancidity of edible oil [Acid value]. Evaluation of Iodine value of edible oils. Evaluation of Ester value of edible oils.

 

Recommended Books:

  1. Harris, D. C., Quantitative Chemical Analysis., 8th ed., W. H. Freeman and Company, New York, (2011).
  2. Braitwaite, A. and Smith, F. J., Chromatographic Methods, 5th ed., Kluwer
  3. Camilleri, P., Capillary Electrophoresis: Theory and Practice, 2nd ed., CRC Press, (1998).
  4. Weinberger, R., Practical Capillary Electrophoresis, 2nd ed., Academic Press, (2000).
  5. Latimer, Jr., G. W., AOAC Official Methods of Analysis, 19th ed., (2012).
  6. Ranganna, S., Handbook of Analysis & Quality Control for Fruits & Vegetables, 2nd ed., TATA McGraw-Hill Education, (1986).
  7. Stuart H. Barbara, “Forensic Analytical Techniques”, 1st ed., John-Wiley & Sons, (2013).

 

Semester-VIII (INORGANIC CHEMISTRY

Course Title: ADVANCED LAB-II (INORGANIC CHEMISTRY)  (for Non-Thesis)

Credit Hours: 3

This course is mandatory for Non-thesis students. This course contains the advanced practical of inorganic chemistry, such as synthesis and characterization of coordination complexes, analysis of different analytes by different techniques etc.

Semester-VIII (INORGANIC CHEMISTRY

Course Title:       RESEARCH PROJECT (Thesis)

Credit Hours: 3

This course is mandatory for thesis students. Students, who will take thesis, will be exempted from course.

813

Semester-VIII (INORGANIC CHEMISTRY

(Optional)

COURSE TITLE: FOOD AND DRUG ANALYSIS

Credit Hours: 3

Course Objectives:

Students will acquire knowledge about sample preparation, derivations and analysis of different types of foods, pharmaceuticals and forensics.

Course Contents:

Food Products:

Introduction to food analysis, sampling of food, general methods of analysis. Analysis of milk, butter, wheat flour, meat, beverages, tea, coca, honey and soft drinks.

Pharmaceuticals:

Classification of drugs, tests for analysis of different pharmaceuticals, introduction to US and British pharmacopeia.

Forensics:

History and scope of Forensic Science, Forensic Ethics, Forensic Toxicology. Classification and analysis of narcotics & dangerous drugs, examination of crime scene evidences, fingerprinting, skeletal material to provide scientific opinion for legal.

Recommended Books:

  1. Skoog, D. A., West, D. M. and Holler, F. J., Fundamentals of Analytical Chemistry, 7th ed., Saunders College Publishing, (1995).
  2. Christian, G. D., Analytical Chemistry, John-Wiley & Sons, Inc., 6th ed.,

(2004).

  1. Eckert, W. G., Introduction to Forensic Science, 2nd ed., CRC Press, (1997).
  2. Nielsen, S. S., Food Analysis, 4th ed., Springer, (2010).
  3. Thomas, G., Medicinal Chemistry: An Introduction, 2nd ed., John-Wiley & Sons, (2007).
  4. Kobilinsky, L. F., Forensic Chemistry Handbook, 1st ed., John-Wiley & Sons, USA, (2012).
  5. Watson, D. G., Pharmaceutical Analysis: A Textbook for Pharmacy Students and Pharmaceutical Chemists, Elsevier, (2012).
  6. Stuart H. Barbara, “Forensic Analytical Techniques”, 1st ed., John-Wiley & Sons, (2013).
  7. Jackson, A. R. W. and Jackson, J. M., Forensic Science, 2nd ed., Pearson Education, (2008).